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PREFACE

Practical scientific applications using massively parallel computer hardware first appeared
on the research scene during the 1980s. The development of these applications was
motivated by the need for computing power orders of magnitude beyond what is available
today for large-scale tasks such as numerical simulations of complex physical and

biological processes, generation of interactive visual displays, satellite image analysis,
and knowledge-based systems.

The First Symposium on the Frontiers of Massively Parallel Scientific Computation, held
September 24-25, 1986, at NASA's Goddard Space Flight Center in Greenbelt,
Maryland, provided a glimpse of the emerging power of massively parallel computers in
solving a wide range of scientific problems. This proceedings is a compilation of all

papers given during the 2-day meeting.

Sponsored by NASA and Goodyear Aerospace Corporation, the symposium featured 33
speakers representing 11 universities, 3 research institutions, 7 companies, and 5
government laboratories. The papers were grouped into five subject areas: Earth
sciences, physics, computer science, signal and image processing, and computer
graphics. More than 250 people attended the symposium, representing 40 corporate and
industrial research laboratories, 29 universities, 13 government agencies, and 5 NASA
centers.

We are very pleased to have brought together--for the first time--applications papers on
three massively parallel computers: the Distributed Array Processor (DAP) (one invited

paper), the Connection Machine (two invited papers), and the Massively Parallel
Processor (MPP) (28 papers from the MPP Working Group). Three additional papers
addressed the next generation of massively parallel hardware and current developments in

their system software.

The diversity of applications running on massively parallel hardware illustrates the

general purpose capabilities of this architecture. The DAP--in service in England for 8
years--produced a wealth of the "new intuition" necessary for its effective use. The
commercially available Connection Machine is being developed for artificial intelligence
applications. The MPP, though designed to perform image processing, is performing
numerical simulations for a majority of its applications.

Massively parallel computers have emerged as inexpensive alternatives to other
supercomputers. And, because their architectures can be upgraded fairly easily,
compelling scientific and marketplace arguments are made for accelerating their

development.

As parallel processing continues to gain ground in the scientific arena, we look forward
to continuing these Frontiers symposia, presenting the latest in scientific parallel

algorithms.

James R. Fischer

Symposium Committee Chairman, and

Dr. James C. Tilton

Program Chairman
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FOREWORD

As NASA moves into the Space Station era with its permanent space-based
observatories, it is faced with processing, analyzing, and storing a monumental volume
of spectrally acquired image data. A few years ago, in anticipation of these future flight
systems, NASA initiated a technology development effort to exploit parallel computation
architectures for dealing with the high-resolution image data. This technology effort
developed the Massively Parallel Processor (MPP), which has recently reached
operational status.

Once the MPP was available, NASA enlisted the assistance of the broader science
community by offering them the opportunity to explore its capabilities. Through a Space
Science and Applications Notice issued nationwide in December 1984, NASA selected
computational investigations for implementation on the MPP. NASA formed the
principal investigators into a working group to evaluate and report on the MPP's
performance and utility for scientific applications. These applications relate not just to
space and Earth science problems, but also to a wide range of general physical and
mathematical sciences.

The NASA-sponsored First Symposium on the Frontiers of Massively Parallel Scientific
Computation provided a forum for the MPP Working Group members to share the results

and experiences gained from their first year's scientific research in computer science,
graphics, image processing, physics, and Earth sciences. Presentations, however, were
not restricted to the MPP Working Group, and the symposium provided an opportunity
to learn of computational applications on other massively parallel computers, including
the Distributed Array Processor (DAP) and the Connection Machine.

The Information Systems Office was extremely pleased with the findings presented at this
Symposium. The reported results provide very useful information about current and
future capabilities of massively parallel computers to handle a wide variety of NASA
problems. It was especially gratifying to learn of the wide range of applicability that
parallel processing offers to the NASA Space and Earth Science Community. This was
further amplified by the rapid start-up time needed to get scientific problems mapped and
running on this new computer's architecture. These results justify NASA's earlier
research and development support of this type of technology and are encouraging for
continuation of the process of massively parallel scientific computational research in
support of space and Earth science programs.

Dr. Caldwell McCoy, Jr.
Manager, Information Systems Office
NASA Headquarters
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An Implementation of a Barotropic Quasigeostrophic Model of Ocean
Circulation on the MPP

C.E. Grosch and R. Fatoohi

Old Dominion University
Norfok, Virginia

and

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, Virginia

Abstract

We discuss here the implementation on the
MPP of a barotropic quasigeostrophic model
of ocean circulation. The mathematical model,

including scalings and boundary conditions is
discussed. The numerical scheme, which

uses compact differencing is also discussed.
The implementation of this model on the MPP
is then presented. Finally, some performance
results are given and compared to results
obtained using the VPS-32 and one processor
of a CRAY-2.

Introduction

A central problem in the physics of ocean
circulation is that of understanding the
interactions of the spectrum of scales present
in these motions. At the long wavelength end

of the spectrum are the planetary scale
motions, typified by the thermohaline gyre
circulation, and the wind driven basin

circulation. These dynamical features are
reasonably quasisteady and are the
background and, presumably, the forcing
functions for the synoptic scale dynamics.

The synoptic scale motions are, roughly, on
the scale of the radius of deformation and

range from the meanders in the western
boundary currents (one to two hundred
kilometers), eddies (fifty kilometers), and
fronts (ten kilometers or less) to the small
scale eddies (one kilometer or less) which

appear to be in the dissipation range. These
motions would seem to be generated by
instabilities in the large scale gyre circulation

which results in the transfer of either kinetic or

potential energy from the gyre to the synoptic
scale motion. From both a theoretical and

practical point of view, an understanding of
the synoptic scale dynamics appears to be of
major importance.

The fundamental force balances of the ocean

are hydrostatic in the local vertical and
geostrophic in the horizontal. All interesting
ocean dynamics are the results of the small
deviations from these balances. Numerical

simulations of these dynamics in terms of the
"primitive" variables, velocity, pressure, and
density, are difficult because, among other
problems, of the required high accuracy of the
solutions in order to separate the time varying
dynamics from the quasistatic geostrophic and
hydrostatic balances. However, a complete
prediction of the dynamics, including the
density field, requires the use of the primitive
system (Bryan, 1975). The primitive variable
general circulation models are the only ones
which can give a complete prediction of the
dynamics, including, especially, the density
field. Currently available computer resources
are not sufficient to allow fine horizontal and
vertical resolution models to be used for

routine parametric experiments with these
models.

The standard approximation used to effect the
separation is the quasigeostrophic model. In
this approximation the dynamical variables are
.the horizontal velocity components and the
vertical component of the vorticity. The
density field appears only in the depth varying
Brunt-Vaisala frequency. This approximation
is extraordinarily rich in phenomena,
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containing, for example, wind driven basin
circulation dynamics, Rossby waves,
barotropic and baroclinic instabilities, as well
as eddies. Within the quasigeostrophic
approximation there is much physics whose
effects should be studied in detail; in some

cases the physics has been explicitly built into
the models while in others it is parameterized.
Examples of the former are topography and
irregular basin geometry, wind forcing and
surface thermal forcing, both of which should
be time dependent; the outstanding example of

the parameterized physics is that of the
dissipation mechanisms, or more generally,
the effects of sub-grid scale turbulent motions.

The fundamental physics of the wind driven
large scale ocean circulation were deduced by
Sverdrup (1947), Stommel (1948) and Munk
(1950). Analytic models such as these are
limited by the complexity of the nonlinear
dynamics. Further progress in understanding
required the use of numerical models. Some
examples of the early use of numerical models
are provided by the work of Bryan (1963),
Veronis (1966) and Holland (1967). More
recently Bretherton and Darweit (1975),
Bryan (1975), Haidvogel, Robinson, and
Schulman (1980), Robinson and Haidvogel
(1980), Haidvogel (1983), Holland,
Harrison, and Semtner (1983) and Miller,

Robinson, and Haidvogel (1983), among
others, have developed numerical models of
quasigeostrophic flow and used them to study
ocean dynamics.

In their most general form these models
require very large amounts of computation
time on the fastest computers available.
Despite the fact that the most powerful
existing vector processors can perform at peak

rates of hundred of MFLOPS, they are
inadequate for many applications. In part this
inadequacy is because it is generally rather
difficult to fully use the vector capabilities of
these supercomputers. In practice, average
processing rates for many codes are in the
range of 10 to 20 MFLOPS (see, for example,
Dongarra, 1984). An alternative way of
achieveing greater processing power is to use
computers consisting of multiple (hundreds or
thousands) processing elements; each

processing element has only a modest
processing power and storage. However, a

4

complete multiple processing system can have
a very large processing capability. If these
multiprocessor computers can be used
effectively, very large gains in overall
processing power are possible.

In this paper we report on the implemenation
of a quasigeostrophic potential vorticity model
on the Massively Parallel Processor (MPP).
In section 2 we give the scalings, basic
assumptions, equations, and boundary
conditions. The numerical scheme is outlined
in section 3. Section 4 contains a discussion

of the implementation of this model on the
MPP. Finally, in section 5 the preliminary
results of this research are given and some
conclusions are drawn.

Equations

The scaling of the variables and the derivation
of the quasigeostrophic equations follows the
development of Pedlosky (1979). The x axis
is positive eastward and the y axis is positive
northward. The coriolis parameter is
approximated by the beta plane
approximation.

4: = 2-(2- s,'_, _ _ 4:. +-(3. if, (2.1a)

with

4, - 2...f'L s,_ q(,,,, (2.1b)

tao = (Z .CI. / to) c.os _6,, (2.1c)

where.fijs the rotational frequency of the earth,

ro is the radius of the earth, andff is the

dimensional distance northward of the latitude

_o (see Figure 1). A lateral length scale, L,

and a vertical length scale, D, are used. It is
assumed that D/L is much less than unity.
The horizontal velocity components, u to the
East and v to the North are scaled by U. The

time is scaled by U_ L where

i_ = (_o _ /U. (2.2)



Expanding the solution in powers of the
Rossby number(U/foL), the equations of the
quasigeostrophic model.for the depth averaged
horizontal velocity /.Z =(u,v) and vertical
component of the vorticity,'y are:

(_'X 4- _ "-0

Vx - u_r =T

5 ---p-,, r ,- (2.5)

dimensionless bottom friction coefficient and

_is the surface wind stress. The wind stress is
dimensionless and its magnitude,2_, has been

scaled to one by tm_ng

U -- _/'p' O/_,, L. (2.6)

Finally the Reynolds number, Re, is defined
by

R¢ = UL/A, (2.7)

with A a horizontal eddy viscosity. In this
derivation it was assumed that the density was
constant, that.the bottom was flat and that the
wind stress, 77, was applied to a rigid lid on
the surface.

If these equations are applied to the flow in a
closed basin the boundary conditions are quite
simple, _=0 on the boundary. This implies

that the vorticity on the boundary is equal to
the normal derivative of the velocity on the
boundary.

For application to flow in basins which are
partly or completely open, inflow and outflow
boundary conditions must be imposed. This
is a subject of continuing research and will not
be discussed further.

It should be noted that this formulation of the

barotropic quasigestrophic equations is in
terms of velocity and vorticity. This is in
contrast to most other formulations in which a

stream function is introduced to satisfy
equation (2.3). Among the few to use the

velocity-vorticity formulation in numerical
calculations are Dennis, Ingram, and Cook
(1979), Fasel (1980), and Gatski, Grosch,
and Rose (1982). The velocity, vorticity
formulation of the Navier-Stokes equations
has certain advantages over more conventional
formulations, particularly with respect to
setting boundary conditions. For example, it
is quite easy to incorporate the generation of
vorticity at solid boundaries, and at outflow
boundaries to use a vorticity flux condition
(Halpern, 1985) to ensure that no vorticity is
artificially reflected back into the
computational domain.

Numerical Scheme

The numerical method used is based on

compact differencing schemes. These
schemes require the use of only the values of
the dependent variables in and on the
boundaries of a single computational cell.
Compact difference methods have been
discussed by Keller (1974). Malik, Chuang,
and Hussaini (1982) used a fourth-order,
compact, difference scheme to solve the
compressible linear stability equations, and
Gatski, Grosch, and Rose (1982) applied
second-order compact schemes to the
numerical solution of the incomprehensible,
two-dimensional, time-dependent Navier-
Stokes equations. This code was later
extended to three dimensional time-dependent
flows and used to study some complex flow
fields (Gatski and Grosch, 1985a,b). The

original ocean circulation code was developed
as a serial algorithm by Spence and Grosch
(1985).

In order to apply the compact differencing
scheme we must write the vorticity equation as
a first order system. Define

_= 3"x (3.1a)

tfl= 3"c_ (3.1b)

then (2.5) becomes

(3.2)

7+-,-s {,.,r,,* v r2 ] + v r:+v=



The velocity and vorticity at time levels,A_and
(,'A'_neare located on the boundaries of and in a

cell as shown in Figure 2.

The centered difference and average operators

are defined on a cell by

gx U'_- ( U2+'h,l-U"'-'/,,,/)/eax_ (3.3)

.,_x U" =- [ U,:",,h,/ + O__,/;,q) /2. (3.4)

With these definitions the, equations (2.3),
(2.4) replaced by

&U* ÷ = (3.5)

,/z,,× U" 5_ U" , (3.6)
-.,.._,), U = o., (3.7)

V" = (3.8)
The vorticity transport system, equations
(3.1a), (3.1b), and (3.2) are replaced by

[ oc_ ÷ S [/W_ U_ b"x (3.9)

T"= (,,_x-fax_-(oa)ocx) _bl (3.10)

_'" : (,/_-_ ax _-(Oj) gc_) 5b'; (3.11)

-.'_'e 3"" _./_,¢ 3" "=/.z,,_, T'_ (3.12)

and

(_) --" c,,_-,4 a - ,/_9_ (3.13)
with

e,_ = .S U" /P.c Ax/z, (3.14)

Oj = S" V" 8e .,',c_,//2.., _.L15)n.
the cell Reynolds numbers. Note that i lS
the cell averaged curl of the wind stress at'_ime

The boundary condition for the velocity

equations (3.5) to (3.8) are that the normal
component is zero on a solid boundary. This
produces a nonzero tangential component on
the boundary, which in turn gives the
boundary condition for the vorticity equations

(3.9) through (3.15); enough vorticity is
produced at the wall so that the tangential
velocity is brought to zero.

Implementation on the MPP

In order to map the data onto the MPP, it is
convenient to introduce auxiliary or box
variables to represent the velocity field.
Referring to figure 2, we introduce the box
variables P and Q at the comers of the cells.

These are defined so that the average of two
adjacent P's is equal to the U on the included
side and similarly for the Q's and V. We then

map this cell onto the array so that each comer
of the cell "corresponds" to a processor and
holds a P and a Q value. Again referring to
Figure 2, if one considers the processor at the
upper left hand comer of the cell the value of
the vorticity at the center of the cell and on the
left hand and bottom sides, as well as the

corresponding values of,_and _/ , are stored
m that processor. Thus, the array with 128 by
128 processors is mapped onto a 127 by 127
array of cells.

It is easy to see that, expressing U and V in
terms of the P's and Q's, equations (3.7) and
(3.8) are satisfied identically. One must then
solve (3.5) and (3.6) with given and the
boundary condition that the normal component
of the velocity is zero on the boundary of the
domain. This is done using a cell relaxation
scheme in which all the values of P and Q on
the corners of a cell are updated
simultaneously, for details see Gatski, et al.
(1982). It is obvious that the values of P and

Q at the comer of any cell are updated four
times in a sequential sweep across the domain.
Thus, this method is a four "color" scheme. It
is quite simple to update each of the "colors"

in parallel and four updates are required for a
complete update of all the points in the
domain. The relaxation scheme is equivalent
to an SOR method.

Once a solution for the P's and Q's has been
found, the next step in the solution procedure
is to calculate the boundary values of the
vorticity. This is done by computing the
vorticity required to be added at the boundary
so that the tangential component of the
velocity is reduced to zero. This is done using
equation (2.4).



Once the values of the vorticity on the
boundary are known, one can proceed to
solve the vorticity equations(3.9) through
(3.15). Using equation(3.12) thevorticity at
timeleveln+1/2canbeeliminatedfrom (3.9).
This, togetherwith theotherequations,gives
animplicit systemfor thevorticity attime
This systemis solvedusing anADI methoci
which requires the solution of tridiagonal
systemsof equationsin, alternately,all rows
and all columns. This is donein parallel on
the array using the cyclic elimination
algorithm. Once the vorticity at time is
knownaswell asat (n-l/2) , equation(3.12)
canbeusedto computethe vorticity at time
(n+l/2) Finally, variousnorms, thetotal
energy and so on are computed. The
mathematical details of this algorithm are
describedin Gatskiet al. (1982).

Results and Discussion

The algorithm described above has been coded
in MPP Pascal and run on the MPP. The code

is moderate length; between 1300 and 1400
lines. This can be compared with the serial
FORTRAN version which is about 2000 lines

long. The code for the four color relaxation is
simple and highly structured. In contrast the
code for the ADI vorticity solver is much more
complex and less structured, it also uses about
20 temporary parallel matrices. There are
procedures to calculate an approximation to
the q function, equation (3.13) and to solve
tridiagonal equations over the rows and
columns. Despite this complexity, the time
used by the ADI solver is only equal to ten or
so iterations of the velocity solver. When the
wind stress is varying in time or there are
Rossby waves propagating in the basin the
velocity solver requires a few hundred
iterations per time step and, thus, uses most of
the computational time. Therefore the

performance of the parallel relaxation routing
largely determines that of the entire code.

Processing rates, usually expressed in
megaflops, are one measure of the
performance of an algorithm on a computer.
Comparison of the processing rates of the
same algorithm on different computers can be
misleading because of the differences in the
basic cycle time of the machines and because
the same algorithms may require different

numbers and kinds of operations when
optimized for different architectures.

Neverhtless, cross comparisons are useful
when a comparison is also made with the
maximum theoretical processing rate of the
computers. This kind of comparison shows
how well, or poorly, a particular algorithm
has been adapted to each of the architectures.
Such a comparison is shown in Table 1.

The relaxation algorithm, in addition to being
programmed for the MPP, has been
programmed in CDC Vector FORTRAN for
the VPS-32, and in FORTRAN for the
CRAY-2. The programs were run on each of

these machines and timings were obtained.
These, together with the operation counts
from the codes permitted the arithmetic
processing rates to be determined. These
together with the theoretical maximum rates

are given in Table 1 for a 128 x 128 grid point
problem.

The scalar rates shown in this table were
obtained when standard FORTRAN codes

embodying a serial version of the algorithm
were run through a vectorizing compiler.
None of the code was vectorzied. The vector

performance on the VPS-32 and the CRAY-2
was obtained after the FORTRAN codes were

rewritten, explicitly using the four color
structure of the algorithm. In addition, the
explicit Vector FORTRAN was used for the
VPS-32 code and the CRAY compiler had to
be told to ignore apparent vector
dependencies.

This relaxation algorithm mapped well onto
the MPP. This is because it can be set up as
nearly all matrix operations. There are
relatively few shift operations and these are all
to nearest neighbors. There are no vector

operations and only two scaler operations per
iteration.

In contrast this algorithm does not vectorize as
well. Because of the color structure, the
longest vectors are one-half of the maximum
dimension; in this case 64. This contrasts
with N-1/2 value of 110 for the VPS-32. The

structure of the algorithm also requires that the
data be accessed with a stride of 2 and this

requires the extensive use of COMPRESS and
MERGE functions. This adds a considerable



overhead. Increasingthe problem sizewill
improvethevectorlengthproblembutwill not
removetheoverheadassociatedwith theslow
COMPRESSandMERGEfunctions.

On the CRAY-2 the strideof 2 is a source of

major difficulty. All of the inner loops of the
rewritten code vectorized, but the major

problem was loading the data from the main
memory to the local memory or the registers.
Here the stride of 2 caused bank conflicts.

A perhaps more realistic way of measuring
performance is to consider the time required to
solve a given problem. Table 2 contains a
listing of the measured time required to
complete one iteration of the 128 x 128
problem on the MPP, the VPS-32, and the
CRAY-2. The execution time for the CRAY

is about 30% less than that of the MPP, while
that of the VPS-32 is nearly 2.5 times greater
than that of the MPP. We also note that we do

more operations on the MPP than on the
CRAY.

A crucial question in using the MPP is
whether or not a problem will fit on the array
or is oversize. Each of the major procedures
in this code requires 20 to 25 arrays of
floating point numbers. Many of these are
temporary arrrays, but these together with
other storage require that we move various
arrays in the out of the staging memory even
when we have a 128 x 128 problem.
Therefore, we must partition these oversize
problems and use the staging memory as a
backup. We have modified the algorithms so
as to be able to handle oversize algorithms, the
details will appear elsewhere. A total of seven
data swaps between the stager and the array
are required for each sheet of data. The
swapping adds 11.5 msec to the time for each
iteration; thus one iteration on a sheet requires
25.1 msec. Some results for oversize

problems, both measured and extrapolated,
are given in table 2.

In summary we have found that it is possible
to adapt a barotropic quasigeostrophic
potential vorticity code to the MPP. We have
been able to use the MPP's considerable

processing power to solve the computationally
intensive flow problems of ocean circulation.
For problems which fit on the array, one

iteration requires about 14 msec; this is about

30% more than that required on one processor
a CRAY-2, and only about 40% of the time
required for the same calcualtion on a
VPS-32. For oversize problems, 2, 3 ..... ,
10 times the array size there is an overhead for

transferring the data to and from the staging
memory. This reduces the efficiency of the
MPP, but not drastically. It is still competitive
with the other supercomputers.

The problems which we have encountered in
using the MPP have not been major. With
regards to software, MPP Pascal as currently
implemented, does not permit operations on
vectors. This is awkward when dealing with
boundary conditions. The major hardware
problem is that the PE memory is only
marginally large enough for our applications.
We really need 4K to 8K bits per PE for the
barotropic code and 32K bits per PE for a
baroclinic model. Finally, input/output is
somewhat clumsy.

Despite these problems, we believe that the

MPP is a useful tool for running ocean
circulation models and we will continue using

it to study the effects of temporal and spatial
variation in the wind field.
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MPP VPS-32 Cray-2 (*)

Theoretical

Maximum Rate 210 200 488

Measured Vector

or Array Rate 175 48 102

Measured

Scalar Rate -- 7 30

(* Using one processor)

Table 1. Theoretical and measured processing rates, in Megaflops, using the relaxation
algorithm on a 128 x 128 grid.

Problem Size

128 x 128

128 x 255

128 x 509*

128 x 1017"

(* Computed by extrapolation)

MPP VPS-32 Cray-2

13.6 33.4 10.4

50.2 47.9 20.7

100.4 73.6 41.4

200.8 124.0 82.6

Table 2. Execution time, in milliseconds, for one iteration. One processor the CRAY-2
was used.
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Figure 2. Mesh cell and location of variables.
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COMPARISON OF THE MPP
WITH OTHER SUPERCOMPUTERS

FOR LANDSAT DATA PROCESSING

by
Martin Ozga
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ABSTRACT

The MPP is compared to the CRAY X-MP
and the CYBER-20S for Landsat data

processing. The maximum likelihood
classification algorithm is the basis for
comparison since this algorithm is simple to
implement and vectorizes very well. The
algorithm was implemented on all three
machines and tested by classifying the same
full scene of kandsat MSS data. Timings are
compared as well as features of the
machines and available software.

INTRODUCTION

The National Agricultural Statistics Service
(NASS) of the United States Department of
Agriculture has for several years been using
Landsat MSS (multispectral scanner) data to
aid in crop acreage estimation. The
estimates are provided for several states,
mostly in the Midwest. For each state, as
much Landsat data as possible is obtained,
the ideal being coverage for the entire
state. Therefore, large amounts of data
must be processed. This large-scale
processing has long been seen as a useful
application of supercomputers, first the
ILLIAC-IV and more recently the CRAY X-
MP (Ref. I). One of the key programs in the
analysis is the classification or
categorization of the data into classes
representing crop types. This classification
is clone on all scenes for all states.

LANDSAT MSS DATA

Each Landsat MSS scene consists of about

10.5 million pixels. Each pixei covers a
square on the earth's surface of about $7
meters on a side. Each pixel consists of the
reflectance intensity in 4 spectral bands or
channels. The intensity is a value between 0
and 255 (more commonly between 0 and 127)

and thus occupies I byte of data. Thus each
pixel occupies 32 bits of data, I word on
many machines or a half word on many
supercomputers.

Often, to improve clQssification accuracy,
mul ti temporal data are used. A
multitemporal data set is made up of two
overlaid Landsat data sets from the same
area on the earth's surface. The

improvement comes in that the two data
sets are taken at different times and, if the
dates are chosen properly, may emphasize
differences in reflectance of various crops.
However, since the multitemporal data sets
contain eight channels of data, they do take
longer to process.

For the USDA-NASS 1986 analysis,
approximately 80 scenes of Landsat data
will be used of which approximately 2S will
be multitemporal. For the purposes of the
test described in this paper, only
unitemporal data sets were used.

TIE CLASSIFICATION ALGORITHM

The maximum likelihood classification
algorithm consists of applying a
discriminant function for each class to each
pixel and assigning the pixel to the class for
which the discriminant function yields the
highest value. Since each pixel is processed
independently, the algorithm is ideal for
vector machines and indeed performs well
on all machines tested. The discriminant
functions is:

G(X, I) = B (I) - .S (X -M (I)) T V (I) (X-M (I))
where X is the pixel

I is the class
M(I) is the vector of mean values
for class I
V(I) is the inverted variance-
covariance matrix for class I

B(I) = .S log (determinant (V (I))

13
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There are three parts to the algorithm.
First, the data must be unpacked and
converted to floating point form. That is,
each byte (channel intensity value) must be
converted to the equivalent floating point
value. Second, the discriminant function
must be applied for each class to each pixel
and the class for which the discriminant

function yields the highest value saved for
each pixel. Third, the data are repacked to
one byte per pixel for economy in storage
for further processing. This means that the
number of classes must be less than or equal
to 255; in practice at USDA-NASS the
number of classes is always well under 255.
Obviously the second step is by far the most
time consuming.

MPP IMPLEMENTATION

The MPP classification algorithm was
implemented on the MPP using Parallel
Pascal (Ref. 2, 3, It). The entire algorithm
was implemented without requiring use of
assembly language so Parallel Pascal was
certainly adequate to the task, although,
perhaps coding the key loop of discriminant
functions evaluation in assembly language
may have speeded up the algorithm
somewhat.

The input-output was done using supplied
fast video routines callable from Parallel

Pascal. The data was mapped so that all
four channels of each pixel were transferred
to the same PF. Of the 1024 bits available

in each PE, 512 were used for pixei storage
allowing 16 pixels to be stored in each PE at
any one time, or 262144 pixels in the entire
pF: memory.

Thus, 42 I/O operations were necessary to
bring in all the data. When the program was
written and debugged, facilities were not
available for overlapping processing and i/O.
The class associated with each pixel was
stored over a portion of the original pixel
values since once the pixel was converted to
floating point, the original values were not
needed any longer. An additional 128 bits
were needed for the four 32-bit floating
point channel values. Additional bits were
used for various temporary values. Some

14

space was left available for a possible
future expansion to multitemporal, eight-
channel data.

It is evident that when processing 10.5
million pixels at 16384 at a time, all PE's
are generally doing productive work. The
lack of hardware floating point did slow this
algorithm. Some tests on the CRAY X-MP
with integer processing revealed that
integer processing led to severe
deterioration of classification results unless
certain intermediate results were stored is
very large integers, being due to the
significant digits which must be maintained
using the inverted variance - covariance
matrix.

The repacking of data, a rather tedious
tasks on the other machines, was easily
realized by proper storage of the data on
the MPP and correct maps for sending the
data through the staging buffer to the
output categorized file.

CRAY X-MP IMPLEMENTATION

The CRAY X-MP/48 at NASA-Ames was
used for the test. The program, which is in
production use by USDA-NASS, is coded in
Cray FORTRAN (CF,T) (Ref. 5) with key
routines coded in CRAY assemble Language
(CAL) (Ref. 6). The use of assembly
language is mainly for historical reasons
since at the time this program was
originally written, the CF-T compiler was
less well developed than it is today. If this
program were re-written, much more of it
would be coded in CFT.

The CRAY X-MP vectorization uses as

operands vector registers each of 64 64-bit
words. The vectorization is achieved

largely through pipelining data. There is
some advantage to having longer vectors,
particularly when coding in CF,T, since
overhead for vector set-up is decreased. A
vector size of 16384 was used for the CRAY

implementation.

CYBER-205 IMPLEI_ENTATION

The Control Data CYBER-205 at NASA-



Ames was used for the test. The program
was coded in FORTRAN (Ref. 7), but makes
extensive use of special extensions and
subroutines. This was necessary since at the
time the program was written and debugged,
the CYBER-20S FORTRAN compiler did a
rather poor job of vectorizatio% a condition
which is being gradually improved.

Vector operations on the CYBER-205
operate directly out of memory and may be
of indeterminate length, limited by the size
of memory. Vectorization on the CYBER-
205 is achieved largely by pipelining data.
The CYBER-20S implements virtual memory
with paging so there is a potential loss of
efficiency if a vector crosses a page
boundary or if two operands to a vector
operator are in different pages in that a
page fault may cause a break in the vector
operation. With these constraints in mind,
the CYBER-205 operates best on long
vectors. Also, internally, vector operands
are pointed to by descriptors which may be
used explicity by the FORTRAN

programmer desiring maximum efficiency.

Finally, CYBER-205 FORTRAN provides

many subroutine calls to perform vector

operations which are not directly expressed
in FORTRAN, that is for most of the

capabilities of the machine outside of

ordinary arithmetic operations. In effect,

when all these features are used, one has a

parallel FORTRAN, somewhat analogous to
Parallel PASCAL on the MPP.

The classification algorithm was coded on
the CYBER-205 using descriptors, several of
the special subroutines, and with
consideration for paging. The vector length
was 16384. Such a coding is in the parallel
form of FORTRAN and it provides for an
efficient use of the machine.

CPU TIMES

The test performed involved classifying a
full scene of data (10.S million four channel

pixels) into SI categories. The same results,
as determined by a count of the number of
pixels per category, were obtained on all
machines except for a difference of two

pixels on the CYBER-20S, an insignificant

difference.

The following CPU times were observed:
MPP: 90 seconds (approximate)
CRAY X-MP: 157 seconds
CYBER-20S: 58 seconds.

It is interesting to note that the MPP lies
between the CRAY X-MP and the CYBER-
20S in timings. Improvements in the code
generated by Parallel Pascal or the use of
assembly language would no doubt bring the
timing down closer to that of the CYBER-
20S; similar improvements on the CYBER-
205 are unlikely since the code already
takes advantage of special features of the
CYBER-205. One would suppose that
implementation of hardware floating point
operations on the MPP would cause it to run
faster than the CYBER-20S on this problem.

Both the MPP and the CYBER-20S are
known to operate best on long vectors
whereas the CRAY X-MP has a shorter
vector but faster scalar speed. The
classification algorithm certainly shows the
advantages of the long vectors when applied
to an algorithm for which they can be
profitably used.

The CPU times for the CRAY X-MP and
CYBER-20S were obtained directly from the
listing received from batch execution of the
program. Such a listing was not available
for the MPP. Therefore, calls to timing
routines were placed around the main
classification loop. These timings totaled
88.76 seconds. The CPU times spent in the
remainder of the program would be quite
small.

ELASPED TIMES

Elapsed times on the CRAY X-MP and
CYBER-20S are not important since both
machines are operated in a multi-
programming environment so the elapsed
time would be very dependent on the mix of
jobs in the system.

However, only one job is present at any one
time on the MPP so that the MPP user

would expect to be charged for the entire
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elapsed time. The total job time on the
MPP was 360 seconds. This time fluctuated

somewhat, presumably depending on usage
of the front-end VAX. The test was run at a
time of relatively low VAX use, on a Friday
evening. Since I/O-CPU overlap was not
available, the time spent in reading the
input file was measured to try to get an
approximation of savings to be obtained if
overlap were present. The input file was
used since it is largest and only the input
file was used since only one I/O operation
may proceed at any one ti me.
Approximately 150 seconds was spent
reading the input file indicating that the
program was 1/0 bound. Thus, if CPU and
input !/0 could be overlapped by reading
smaller pieces of the input file into buffers
in PE memory, one would expect the total
job in the decrease to about 270 seconds.
The time not accounted for in the above

calculations, 120 seconds, was spent in
writing the output file and also in reading
the statistics file and preassembly in some
overhead in communicating with the VAX.
Thus, one would, in a production made,
expect to pay for 270 seconds of MPP time
to do a 90 second job. Of course, on the
CRAY X-MP and CYBER-205 one is
typically changed for i/0 and often memory
usage. The wide variance in applying these
changes from site to site makes comparison
difficult•

EASE OF USE

Ease of use is necessarily subjective term,
based on one's opinions and experiences with
various system. Nevertheless, some
comments can be made. I found the MPP

generally easy to use. Parallel Pascal
provides a good interface to the machine.
The biggest problem in Pascal and other
languages is that one must often use special
routines for I/0. Once I learned about the

special routines, I found them generally
convenient to use. The problem of using up
the limited memory of the MPP with the
stack space required for complicated
expression can be severe_ perhaps an option
should be added to Parallel Pascal to tell

the user how much stack space is used by
any particular statement. Otherwise, at
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least for this particular problem, the size of
the PE memory was not really a constraint.

Landsat processing is characterized by
moving large amounts of data. While the
facilities provided on the MPP were
adequate for the test, they would not be
adequate for production use• For the test,
the Landsat data tape was copied on the
VAX to a removable disk pack and this disk
pack was then made available for the test.
What is needed for production are facilities
typically available at supercomputer sites
wherein data are staged between tapes and
dedicated, high-capacity, high-speed disks.

In general, I found both the software and
hardware to be reliable. It was not
necessary or even advantageous to use the
MPP simulator since the MPP itself was
generally available. Debugging facilities
were perhaps a bit crude but adequate.

CONCLUSIONS

The MPP has promise for Landsat data
processing. The most urgent need is for
improved data handling. However, since the
speed in this test was slower than on the
CYBER-20S, and since both are
characterized by requiring long vectors,
perhaps a more complex PE implementing
hardware floating point is in order. It would
be interesting to do a comparison on some
algorithm requiring only or mostly integer
computations. Unfortunately, none of the
major programs currently used by USDA-
NASS for Landsat processing fits this
requirement so no such test was performed.
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ABSTRACT

We have developed a physically based
numerical model of heat and moisture

flow within a hillslope on a parallel
architecture computer, as a precursor
to a model of a complete catchment.
Moisture flow within a catchment
includes evaporation, overland flow,
flow in unsaturated soil, and flow in
saturated soil. Because of the

empirical evidence that moisture flow
in unsaturated soil is mainly in the
vertical direction, flow in the
unsaturated zone can be modelled as
a series of one-dimensional columns.
This initial version of the hillslope
model includes evaporation and a single
column of one-dimensional unsaturated

zone flow. This case has already been
solved on an IBM 3081 computer and is
now being applied to the MPP architec-
ture so as to make the extension to
the one-dimensional case easier and to
check the problems and benefits of
using a parallel-architecture machine.

Keywords: Hydrology, Hillslopes,
Parallel Processing, Unsaturated Flow,
Evaporation.

INTRODUCTION

One important part of the global
hydrological system is a catchment,
which separates rainfall into three
parts: evaporation, overland flow,
which goes directly to a stream, and
infiltration, which flows at a much
slower rate vertically through the
soil to a saturated zone, where the

water then flows horizontally and

merges into the stream or is stored

as groundwater. This involves four

components: evaporation, overland

flow, flow in unsaturated soil and
flow in saturated soil. If we are to

understand the way in which spatial

variations of hydrological parameters
affect the water balance of a catch-

ment, including evaporation, runoff,

erosion and transport of minerals,
we have to model the flow over and

within a hillside explicitly.

Several workers have written hillslope

models (Ref. 6). All of these have

had limitations mainly because they
could not be executed in a reasonable

amount of time. This computer limita-

tion is much reduced if a parallel

processor is used, as it is possible

to write the model in such a way that

it can be solved in parallel at many

points at one time.

The first stage of the work is to

verify that such a model may be

efficiently executed on a parallel

processor. To this end we have coded

and tested a model which already exists

(Ref. 2) on a serial computer, an

IBM 308], and which contains two of

the four previously identified

components, namely evaporation and
unsaturated flow. We have transferred

an existing model to the MPP so that
we may verify the accuracy of the

parallel computations. We also plan
to estimate the computational

efficiency of the full catchment model

in a parallel machine over the

equivalent model on a serial machine,
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if such a serial model were to be
successfully created.

In this paper we discuss the physics
of the one dimensional model, the
method of solution, and its adapt-
ability to the parallel architecture.

Model Description

The complete soil mode] is described

in Ref. 2. The soil moisture profile
in the unsaturated zone is the solution

of the continuity equation

@e @qm

@t @z
(i)

where O(z,t) is the volumetric soil

moisture (water volume/soil volume)

at depth z at time t, and qm is the
vertical soil moisture flux, modelled

by (Ref. 8)

2e

qm : K - De ( .... ) (2)
az

K is the hydraulic conductivity, and

De is the moisture diffusion
coefficient, which depends on soil

moisture 0, the soil matric poten-

tial _ and other physical constants.

K and _ are estimated with the para-

meterization (Ref. 3)

K(O) = Ks(e/Os )2b+3 (3a)

_(e) = ¢s(eles )-b (3b)

in which Os, Ks, and Os are moisture

content, conductivity, and potential

at saturation. The value of b depends
on soil texture.

The temperature profile in the soil
may be modelled with Fourier's

equations and is one option in the

serial version. However, we have

chosen to implement the computational ly
simpler yet physically adequate

force-restore equations (Ref. 7). The
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surface_ and deep soil temperatures Ts
and T are modelled by

aTs 2G 2#

- -........ (Ts - T")
at a T

(4a)

m

aT G
B

at a J365 #
(4b)

a : J _CT/# (4C)

where G is the soil surface heat flux,

and c are respectively the soil

thermal conductivity and heat capacity,
and T is the length of the day. T is

the temperature at the depth where
fluctuations are seasonal rather than

diurnal. For most soils this depth is
about 2 meters. The conductivity and

heat capacity are modelled as functions

of soil moisture and soil type with
the model of Ref. 4.

To solve_ these equations for 0, Ts,
and T, boundary conditions must be

supplied for moisture and temperature
both at the air/soil interface and in

the bottom layer of the profile. In

principle, either the fluxes qe and
G or the variables 0 and T could be

specified. In the model, surface heat

and moisture fluxes are computed to
model the effects of the environment

(i.e., rainfall, evapotranspiration,

radiation, etc.) on the profile
evolution. At the bottom of the

moisture profile a choice of flux

or moisture boundary condition is

used. One can specify constant
moisture, a downward moisture flux

equal to the hydraulic constant of the

bottom layer, or any constant value.

The energy balance equation provides
the surface fluxes:

G = R + LE + H (5)

All fluxes are positive downward. G is

the heat absorbed by the soil, R is



the net radiation flux, LE is the
evapotranspiration energy flux, and
H is the sensible heat. After finding
the solution, the surface moisture
flux qe is set equal to E and G is
used in the force-restore equations.

The net radiation R is divided into
average short- and long-wavelength
components:

R = Rshort + Rlong (6)

Either or both components may be
either estimated or measured. All

four options are allowable within the

computer program, standard models such

as the Brunt model for long-wave

radiation being available as options

to estimate either or both components.

A standard model for the latent heat

flux under neutral atmospheric stability
is (Ref. 5)

LE = - pcpk2U--a

Y in2(Z/Zo ) (es - ea) (7)

where p isothe density of air (I.15 x

lO-° g cm-°), cn the air specific heat,

k the von Karma_ constant (0.--4),zo the
surface roughness parameter, Ua the
wind velocity (centimeters per second)

at height z averaged over a suitable

time period (~ l hour), ea the vapor

pressure at height z, es the vapor
pressure at the soil surface, and y

the psychrometric constant (0.61808 mbar
K-I ).

This may be expressed as

LE = -Cl_a(e s - ea) (8a)

pCpk 2
where Cl = (8b)

y In2(z/z o )

Input to the program includes the

constant Cl and both Ua and ea as
functions of time.

The sensible heat flux H in the con-

tinuity equation (21) is calculated by

H : -YCIU-a(Ts - Ta) (9)

The terms of heat balance equations are

functions of the known surface tempera-
ture_T s and the meteorological variables

ea, Ua, and Ta .

METHOD OF SOLUTION

The continuity equations (I and 4) are
solved by expressing the spatial deriva-
tives of the moisture fluxes as finite

differences, and then using a fourth order

predictor-corrector for the time integra-
tion.

TL.,_ _-*

,,,_soil is divided into N layers of

varying thicknesses AZ i, where N and
AZ i are input variables. At a parti-
cular time the moisture fluxes at the

N-I interior boundaries are calculated

by evaluating Eq. 2. The surface and

bottom fluxes are computed by evaluating

the boundary condition equations at
the top and bottom boundaries. This

gives the flux at the N+I layer boundar-

ies, and the derivative with respect
to depth is approximated for the ith

layer by

qmi+1 - qmi

( qm) I o)
az Az i

The continuity equations (I and 4) are
of the form

ay + +

..... f (t,y)

at
(11)

where the state vector y has N+2

elements, soil moisture ei in each

of N layers, Ts and T. The first N
+

elements of f are Eq. lO, and fn+l
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and fn+2 are the right hand sides of
the force restore equations, 4a and 4b.

This is readily solved by an Adams-
Bashforth predictor-corrector algorithm
(Ref. 1,9). Wefirst introduce the
backward difference operator V such
that

vf(t) = f(t) - f(t - Vt)

Higher order backward differences are
evaluated by successive applications

of the operator;

v2f(t) = v(vf(t)) = f(t) -

2f(t-At) - f(t-2At)

v3f(t) = f(t) -3f(t-at) +

3f(t-2At) -f(t-3At)

v4f(t) = f(t) -4f(t-At) +

6f(t-2At) -4f(t-3At) + f(t-4At)

Using only the state vector y and the

physical model f , at time t, an
estimate (called the predictor) at
time t+At is

÷ (p) ÷ l
y (t+At) = y(t) + At[l + --- V +

2

5 3 251 ÷
.... V2 + --- V3 + ..... V4]f(t)
12 8 720

÷ (p)
Then, using y (t+At) to evaluate

the model f(t+At) at the t+At,
one may compute another estimate of the
state vector called the corrector;
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÷(c)
Y

+ 251 +

(t+At) : y(t) + At f(t+At)
720

+

At

720

÷

..... [469 + 109 V + 49 V2 +19 v3]f(t)

(13)

The physical model equations are

evaluated only once each time step

to calculate f(t+At). The difference
between

÷ (p) ÷ (c)
y and y is a reliable estimate

of the error, and the software deter-
mines if each element of this
difference lies within a user specified
window. If all differences are smaller
than this window, the integration step
size (At) is doubled, leading to
increased computational efficiency.
If any difference is too large, the
step size is halved. This halving and
doubling requires no re-evaluation of
the model equations. The values of the
four backward differences for the new
integrator time (whether for halving,

doubling, integration) are calculated
as linear combinations of the four

back values for the old integrator

time. The fact that the same calcu-

lations are done on many pieces of
data at the same time as well as the

boolean nature of the error window

checks make the Hillslope Model an

ideal application for a Single

Instruction Multiple Data (SIMD)

Massively Parallel Processor (MPP).

Mapping the Hillslope Model to the
MPP Architecture

The initial mapping the Hillslope
model to the MPP involved three

phases:

I. Determination of scalar and paral-

lel components of the calculations
2. Data initialization on the MPP

3. Data output to the VAX

Both calculations within the layers



of the hillslope and at the boundaries
are required at each time step of the
model integrations. The calculations
within the hillslope are exactly the
sameat each layer, so they were set
up so that they could be done in unison
by meansof parallel arrays in the MPP
Array Unit. These parallel values
consisted of the soil moisture, temp-
erature, depth, layer thicknesses,
fluxes, derivatives, backward differ-
ences, as well as predicted and
corrected values. Becausethe model
was set up with a view to extension
to a two dimensional model, each row
in the Array Unit was to represent
one vertical column in the hillslope,
with the componentsof the row repre-
senting the layers in it. This initial
version of the model was set up with
!4 layers in the soil column to match
the serial calculations. Thus in this
one-dimensional rendition, only part
of the first row of the Array Unit
was used for each parallel array of
data. In addition, since the tempera-
ture and moisture values constitute

the state vector (y) and thus require
the sametype of computations, they
were placed together in the first
row of the array unit. While this is
initially wasteful in terms of the
computational power of the MPP, it
allows an easy extension to a two
dimensional model which will use the
other rows and hence the full cap-
abilities of the MPP.

The boundary conditions involve only

single values at the top and bottom
of the soil column modified with

scalar input data, and so they may
be more efficiently done serially with

the Main Control Unit (MCU). Thus,

implementing the model on the MPP

involved scalar and parallel compo-
nents as well as communication between

the scalar and parallel components
for boundary condition values. The

MPP architecture is very efficient

at passing scalar values back and
forth between the MCU and the Array

Unit as it has a register designed

for this purpose. Two special purpose

assembly routines were written to take

advantage of this. One took a user

specified row and column in a parallel

array and placed a given scalar value
there. Another took a user specified

row and column in a parallel array and
retrieved a value into a scalar in

the MCU. These were used in the

boundary condition calculations.

Data intialization on the MPP therefore

involved initialization of parallel

arrays as well as scalar data. These

arrays were initialized in FORTRAN

arrays and scalars on the VAX and
transferred over to the MPP scalars

and arrays via the DR780 and DRllb

buffers. The capability of the stager

to permute the data bits between the

VAX and the Array Unit was used to

change the format of the floating point
data from the VAX format to the MPP

format while the data was being trans-
ferred between the VAX and the MPP.

Because of this, parallel data trans-
mission between the VAX and the MPP

appeared transparent. Explicit bit

swapping of scalar integer data between
the VAX and MCU to accomodate the two

separate integer formats was still

necessary, however, as these values
were transmitted across the DRIIb

which has no data permuting capa-

bility.

Special purpose routines were written

to enable data output to the VAX of

the information in the parallel arrays.

These routines passed parallel arrays

into predefined VAX FORTRAN arrays.
MPP Pascal callable VAX FORTRAN

routines were written which could write

out the data in these arrays for user
examination of intermediate and final

results. In addition, some high level

I/O equivalent to Pascal 'writeln'

was written to speed the debugging

process by bypassing the CAD debugger
entirely.

The next step in mapping the Hillslope
model to the MPP architecture involved

implementing the physical model
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equations in MPP Pascal.

The predicted and corrected state
vector values (soil moisture and

temperature) involve a calculation

of the type (see Eqs. 12 and 13)

y = y + At Z W * tp
n+l n I i i

where

W are the backward differences

i for each layer

tp are the constant scalar coeffi-
i cients in the predictor equation

By assigning the backward differences to

individual parallel arrays so that order
ith backward differences for each layer

are stored in the first row of the ith

parallel array, the above calculation
can be solved for each layer with a

series of parallel operations.
W * (tp * At) involves only multi-
i i

plication of a parallel array by a
scalar as the coefficients of the

predictor equation would be the same
for each layer with the same order

backward differences. The remaining

sums can be done for each layer in

parallel. Once the predicted and
corrected values of each layer are

available, their differences can be

simultaneously calculated. Compari-

sons with user input error windows
can be done all at once with simple

boolean tests on the parallel arrays.
Recalculation of the backward

differences for each layer can be done
in unison with the backward difference

arrays.

There are additional calculations

needed at each layer and each time

step in order to include the depend-
encies of the heat and moisture

fluxes on the moisture and tempera-

ture profiles through the column.

These involve the matric potential,

the hydraulic conductivity, the
moisture fluxes as well as the deriva-

tives of the moisture fluxes and

temperatures. Special calculations
must be done at the boundaries in

order to include the effects of the

air/soil interface at the top as well
as the effects of saturated soil at

the bottom of the column.

The matric potential and hydraulic

conductivity calculations involve only

parallel computations. They both

depend on the calculation of the type:

result := a * Ab

where 'a' and 'b' are scalars and 'A'

is a parallel array (which is the same
for both). A parallel version of this
was calculated by:

temp := In( A )
result := a * exp( b * temp )

where 'temp' is a temporary variable.

The savings in time by only calculat-

ing the natural logarithm once and

doing the calculations in parallel
will be considerable as the model is

extended to more dimensions. The

derivatives are also easily available

through parallel operations as the

change between layers can be obtained
easily through the 'shift' operator

and the thickness of each layer is

stored in a parallel array. The same

is true of the fluxes. Computation of

thermal parameters involved mixing some
scalar values with information from

various points in parallel arrays and

storing the results back in the paral-
lel arrays. Here is where the special

purpose routines were used. Simple

'get' and 'put' routines were written

to get/put a value out of/into a user

specified row and column in a parallel

array. This could be done quickly

using the special capabilities of the

MPP architecture. Moreover, as the

needed scalar computations were being

done, parallel operations could be
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performed concurrently in the Array
Unit.

Minimizing the Program Execution Time
by Using the Capabilities of the MPP
Through MPPPascal

The multiprocessing capabilities of
the MPPare easily available through
MPPPascal. Scalar calculations are
performed in the Main Control Unit.
This is a special purpose microcoded
16-bit processor which has a 16 bit
hardware multiplier. Parallel calcu-
ations are performed in the Array Unit
with 16384specially designed pro-
cessors. The scalar Main Control Unit
calculations and the parallel Array
Unit calculations are done simul-
taneously except whenthe Main Control
unit is expecting a scalar result from
the Array Unit. This would be the
case, for example, when doing a maximum,
minimumor sumoperation on a parallel
array. MPPPascal produces a code
which runs in the Main Control Unit
and makescalls to library and special
purpose routines which run in the
Array Unit. There is also a call queue
which enables the Main Control Unit
to stack its calls (including register
transfer data) to the Array Unit. These
calls may be stacked up to 15 deep.
Thus a parallel operation, such as an
assign, in MPPPascal translates to a
single call by the Main Control Unit
to the Array Unit to begin its process-
ing with its own processors. The Main
Control Unit is then free to do either
scalar calculations or send another
parallel operation request to the
Array Unit. By recognizing that the
Main Control Unit is a serial processor
it becomesapparent that sending
requests to the Array Unit to perform
parallel operations and then doing
scalar operations in the Main Control
Unit allows the scalar and parallel
calculations to be done at the same
ti me.

This feature of the MPPwas used
extensively in the boundary condition
calculations to reduce program

execution time. It proved to be the
single most important tool for reduc-
tion of program running time. Other
techniques involved setting up masks
at initialization time and reusing
them instead of regenerating them with
'WHERE'statements, and also the use
of temporary stores for the results of
natural logarithm and exponent functions
which were to be used in more than one
calculation.

A 24 hour simulation on the MPPwith
14 layers used 30 seconds of computer
time, whereas the identical simulation
on the IBM3081 serial machine used 4
seconds. Adding more layers to the MPP
model would use virtually the same
amount of time, whereas the execution
time on the serial machine is
approximately linear with the numberof
layers. Weexpect, then, that the
break even point is approximately 115
layers. Modelling an entire catchment
could easily require ten times this
number, so we expect that the parallel
architecture of the MPPwill provide
significant savings in computer time
over a similar model on a serial
machine.

CONCLUSION

Wehave coded a one-dimensional
hydrological model of the surface
energy and moisture balance and
moisture flow in the unsaturated
zone, as a precursor to a complete
catchment model.

By comparing to an identical model
on an IBM 3081 serial machine, we
have shownthat it is feasible to use
the MPPfor numerical models such as
this one, and that the parallel arch-
itecture makessuch calculations more
efficient when the physical model
includes modelling the sameprocesses
at manydifferent points in space.
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ABSTRACT

A numerical technique for solving the colli-
sionless Boltzmann equation describing the time
evolution of a self-gravitating fluid in phase space
has been implemented on the Massively Parallel
Processor (MPP). The code performs calculations
for a two dimensional phase space grid (with one
space and one velocity dimension). Some results
from calculations are presented.

The execution speed of the code is compa-
rable to the speed of a single processor of a
Cray-XMP. Advantages and disadvantages of the
MPP architecture for this type of problem are
discussed. The nearest-neighbor connectivity of
the MPP array does not pose a significant obsta-
cle. Future MPP-like machines should have much

more local memory and easier access to staging
memory and disks in order to be effectS.re for this
type of problem.

Keywords: Stellar Dynamics, Phase Space, Gal-
axies, Star Clusters, Parallel Processing, N-body
Techniques

INTRODUCTION

The dynamics of gravitating systems are of
great interest because of their application to many
astronomical systems such as clusters of stars, gal-
axies, and clusters of galaxies. These problems
have two important characteristics which make
them ideal for study using a parallel computer.
First, the fundamental physics governing the evo-
lution of the system is both simple and well-
known: the force between any pair of bodies in
the system is just determined by Newton's law of
gravitation. Second, this simple law must be ap-
plied very many times during the course of each
time step, and all of the force calculations could
in principle be performed in parallel.

N-body Methods

Unfortunately, direct N-body methods, in
which the force between every pair of bodies is

calculated in each step, are not practical for large
stellar systems such as galaxies. Galaxies have so
many stars that the gravitational potential is very
smooth, and gravitational encounters between in-
dividual stars are rare. Consequently, such sys-
tems are described as collisionless. The actual

number of stars is far too large for direct N-body
simulation (N _ 1011), and computations with
feasible values of N (_ 104) produce many more
2-body encounters (collisions) than occur in the
real systems.

Most studies of the dynamics of collisionless
_.^,, .......... ,_........ .3 a modified ,,r L_ J.._v-uuuy tech-
nique in which the density distribution is binned
and smoothed before calculating the gravitational
potential (e.g., Ref. 1). The calculation can then
include many more particles than direct N-body
simulations (N _ 105), and 2-body encounters
are prevented because the potential is smoothed.
Even this method, however, suffers from graini-
ness due to the finite number of particles in each
zone; this graininess manifests itself as a numer-
ical "noise" in the calculation. It also limits the

resolution which is achievable with a given num-
ber of particles. Another problem is that it is
necessary to use a "softened" gravitation poten-
tial instead of the real 1/r potential to avoid seri-
ous instabilities. Sellwood (Ref. 1) has shown that
this significantly changes even the linear behavior
of the system.

Phase Space Methods

Numerical noise can be eliminated if the stel-

lar system is treated as a fluid in phase space.
The evolution of such a system is described by
the collisionless Boltzmann equation. A Japanese
group has done some calculations using this ap-
proach (Refs. 2-5). Their results are very inter-
esting and indicate that the numerical noise in

the N-body methods may have led to spurious
results. For example, Nishida (Ref. 5) found that
the bar instability of a thin stellar disk can be
suppressed by the presence of a small bulge com-
ponent; previous N-body calculations had led to
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the opposite conclusion, apparently because their
resolution was inadequate.

This paper reports on the implementation

on the Massively Parallel Processor (MPP) of a
new numerical technique for phase space tech-
niques. The technique is briefly described, some
results are presented, the MPP implementation is
discussed, and some improvements are suggested
for future MPP-like machines which would make

them more effective for this type of problem.

THE NUMERICAL TECHNIQUE

The numerical method described here was

developed by the author and P. R. Woodward
(Refs. 6, 7). Phase space is divided into an Eu-
lerian (fixed) grid. This grid is two-dimensional
(2-D) for spherical systems without angular mo-
mentum, 3-D for spherical systems with angular
momentum, or 4-D for disk systems. The grid
need not be rectangular; for the disk problem, for
example, a polar grid can be used. For each zone
of the grid, we store the mean density in the zone
and all the first order moments in the phase space
coordinates. Thus, for a 2-D grid, there are 3 mo-
ments: the mean density, the x-moment, and the
v-moment. The moments in a zone imply a unique
distribution of density within that zone which is
linear in all coordinates. For a 2-D grid, the den-
sity is f(x, v) --- (f) -'1-fzx -_ fur, where If) is the
mean density and fz and fv are proportional to
the x and v moments.

A version of this scheme using second order
moments has also been implemented; however,
this scheme requires much more memory than the
linear scheme, especially for higher dimensional
problems. The limited memory of the MPP made
it desirable to use only linear moments.

A time step consists of calculating new val-
ues for the moments in each zone. The x and

v motion is split into two half steps; by taking
steps in the order x-v-v-x, second order accuracy
in the time step is achieved. Fluxes of each mo-
ment across the zone boundaries are computed
from the acceleration and velocity of material in
the zone. The moments are updated using the
fluxes so that mass and momentum are conserved

during the time step.

RESULTS OF CALCULATIONS

The figures show the results for two calcula-

tions of the gravitational collapse of a l-D, spa-

3O

tially periodic system consisting of infinite sheets
of stars. For both examples, the spatial period
is 10 Jeans lengths, the mean space density is 1,
the Gaussian velocity dispersion is 1, and the 2-D
phase space grid is 128 x 128.

The initial conditions differ for the two exam-

ples. The example in Figure 1 has a density per-

turbation of the form $p = A cos 2_rx/L, where
L is the length of the grid and A = 0.01. The

example in Figure 2 has *p = A[cos(2rx/L)+
3 cos(6_rx/L)].

The figures display the evolution of the sys-
tem with time. One spatial period is shown in
each figure. For each time, a contour plot of the
phase space density is shown, with velocity on the
vertical scale and position on the horizontal scale.

The contours are logarithmically spaced.

At the beginning of the calculation, the ma-
terial is concentrated near zero velocity and is
almost uniformly distributed in space. The ini-
tial perturbation causes material to feel a gravi-
tational acceleration toward the center. This in-

creases (decreases) the velocity of material to the

left (right) of center, so that it moves up (down)
in the figure. The higher velocity material then
moves toward the center, which leads to the wind-
ing up of the original phase space distribution.
As time passes, the original material becomes so
tightly wound that it is no long resolved by the
grid; it then appears smooth.

These two calculations reveal the interesting
feature that the final phase space density distri-
bution is not identical for the two collapses, so
that there is some _memory" of the initial per-
turbation. This is of interest in understanding
the formation and evolution of galaxies; it hints
that buried in the present-day structure of galax-
ies there may still be information about the con-
ditions under which galaxies were formed.

IMPLEMENTATION ON THE MPP

The implementation of this numerical scheme
on the MPP is relatively straightforward. The 2
dimensional phase space grid is mapped directly
to the 128 × 128 array of processors in the MPP,
with one zone per processing element. The near-
est neighbor connectivity of the MPP is precisely
what is required for the flux-based method de-

scribed above. The programmable boundary con-
ditions for the MPP array allow the boundaries
of most problems to be treated easily.
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Figure 1. Evolution of phase space density for Example 1 (see text for details). 

31 



The MPP architecture is very effective for
problems like the one described here which require
intensive floating point computations. The MPP

is divided into a scalar processing unit (_he MCU)
and a parallel processing array; the M_U places
requests for array operations into a call queue.
The time for a floating point add or multiply in
the array is long compared to any computations
which must be formed in the MCU; consequently,
the MCU keeps the call queue full, and the array
is working continuously. The array-side code con-
sists of primitives which can (in principal) be fully
optimized; the user code resides in the MCU and
need not be optimized at all except in its orga-
nization of calls to the array, because the execu-
tion time of the MCU code has negligible effect on
the total MPP time required for the calculation.
The net effect of all this is that execution time on

the MPP is very close to what one would calcu-
late from simply counting the number of floating
point operations and multiplying by the time per
operation.

Performance of the MPP Code

The execution speed of the MPP code is
about 50 times faster than a VAX 86G0. This is

comparable to the speed of the same method on a
single processor of a Cray-XMP/48, even though
the much greater vector length of the MPP (16384
versus 64) requires about 5 times more multiplies
than the Cray within the inner loop. For a grid
with uniform spacing_ at each time step there are
many coefficients which need be calculated only
once for each row of the grid. In the Cray ver-
sion of the codes the short vector length allows
these coefficients to be calculated outside the in-

ner loop, but on the MPP the coefficients must
be re-calculated for every zone. This greatly in-
creases the number of operations within the in-
ner loop, so that even though the MPP can per-
form more multiplies per second than the Cray,
the speeds of the machines are similar for this
scheme.

For a problem using a grid with non-uniform
spacing, the MPP program would be faster than
the Cray by a factor of 3 or more, because nearly
all the calculations would have to be performed
within the loop by both the Cray and the MPP.

It appears that a 3 or 4 dimensional phase
space calculation will also run several times faster
on the MPP than on a Cray. However, higher
dimensional problems require much more memory
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than is available within the MPP array. They can
be implemented on the MPP if some limitations
which currently exist can be alleviated.

Limitations of the MPP

The code development time was much greater
on the MPP than on the Cray, and the MPP pro-

gram is more difficult to modify (e.g., to use grids
larger or smaller than 128 × 128). This can be
attributed to limitations of the MPP which fall

into two classes: those which are determined by
the hardware (which probably cannot be fixed for
the current machine), and those which are deter-
mined by software (which can be fixed).

Hardware Limitations - Hardware limitations
of the MPP include:

(1) the lack of direct I/O facilities, and

(2) the severe shortage of local memory for each
processing element in the array.

The MPP is slowed significantly compared
to a Cray if many intermediate results must be
stored on disk. On the MPP, all input and output
(I/O) is performed through the front-end VAX.
The rate at which the VAX can respond to MPP
I/O requests is often the limiting factor in the per-
formance of the program. In contrast, the Cray

has dedicated, high speed disks so that the I/O
usually has little effect on the execution time for
the program.

Each node in the array has only 1024 bits of
local memory. Some of this memory is required
for the system, leaving room for about 25 32-bit
floating point numbers for all variables and tem-
porary storage. This local memory is so small
that it is difficult to implement a modestly com-
plicated algorithm such as the one discussed in
this paper. It is necessary for the programmer to
manage memory very carefully, with temporary
variables being constantly re-used within mod-
ules. This sort of coding is highly prone to er-
rors, and the resulting bugs are difficult to find
and eradicate.

Even using the staging memory, which con-
tains a much larger reservoir of storage, some al-
gorithms will be very inefficient. The need for nu-
merous temporary variables may force one to the
unpleasant prospect of having to roll temporary
variables in and out of staging memory frequently
during each time step.
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Software Limitations - The hardware prob-
lems are exacerbated by shortcomings of the soft-
ware that currently exists on the MPP. Neither
disk I/O nor the staging memory are integrated
into the high-level language MPP Pascal, which
was used for the implementation of the phase
space method. The existing utility routines do
not make use of many of the hardware capabil-
ities of the MPP. For example, the hardware is
capable of transferring data to and from the stag-
ing memory in parallel with array operations and
with no interaction with the VAX; this is not im-
plemented in current high level routines.

Software limitations of the MPP Pascal com-

piler also make the shortage of local memory
harder to deal with. The compiler uses far too
many temporary locations in memory for any
reasonably complicated assignment s_atements.
Consequently, the programmer is requ'red to do
the compiler's job of breaking each equation down
into binary operations and managing the inter-
mediate results which are generated. This is an
error-prone process which would be much more
efficiently left to the compiler.

The local memory of the array is so small
(when used for floating point numbers) that it
might be best to view it as similar to the gen-
eral purpose registers in many scalar computers.
There are usually not enough registers to hold all
of one's data for the duration of the problem; in-
stead, the data is stored in main memory (staging
memory, for the MPP) and is brought in a piece at
a time for processing. In the MPP, approximately
four floating point multiplies can be performed in
the time required to move a 32-bit number from
the stager to the array; this is slow compared to
many scalar computers, but it still may be short
enough for the _register model" of array memory
to be viable. The time required for this transfer
becomes negligible if it can be carried out in par-
allel with array operations, as is permitted by the
hardware.

Requiring the programmer to manage these
data transfers on the MPP is equivalent to requir-
ing the programmer to write in assembly language
on a scalar machine. An advantage of treating
array memory as registers is that a great deal of
effort has been devoted to developing compilers
which make efficient use of registers. Many of the
techniques that have been developed for compilers
on scalar computers thus might be fruitfully ap-
plied to memory management on the MPP. This

would dramatically reduce the software develop-
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ment time on the MPP.

FUTURE MPP-LIKE MACHINES

Future MPP-like machines should be orders
of magnitude faster than future short vector ma-

chines like the Cray. They will probably always
be more difficult to program than the Cray, but
the rewards for the effort will be great.

Many of the features of the current MPP are
beautifully suited to large numerical calculations
like the one described here. Such features should
be retained in future MPPs:

(1) The separation of the array and the scalar
processor allows very efficient use of the array,
as discussed above.

(2) The staging memory is an extremely useful
device which does much to compensate for the
nearest neighbor connectivity of the array. It
allows problems with more than 2 dimensions
to be handled effectively.

(3) Programmable boundary conditions for the
array allow the efficient treatment of many
problems. Some additional boundary condi-
tions might be useful (e.g., a twisted connec-
tion in which the top of the last column is

connected to the bottom of the first column.)

On the other hand, there are some aspects of
the MPP architecture that could definitely be im-
proved for this type of problem:

(1) The local memory needs to be much bigger.

(2) Some directly connected, high speed I/O de-
vices are needed. These should include direct

disk storage and an image display.

(3) As the array gets bigger, it will be important
to have faster ways to load data into it and
to shift data across it.

(4) Finally, the hardware is important, but the
accompanying software development must
not be forgotten.

Much of the current research in parallel com-
puter architectures is directed toward develop-
ing machines with more sophisticated connectiv-
ity than the MPP. Machines with butterfly or
hypercube connections allow easy communication
between any pair of processors. This is indeed
of critical importance for many algorithms, which
simply could not be implemented on the MPP.



For example, the most promising N-body meth-
ods organize the particles into a binary tree and
communicate information about masses and po-
sitions along the branches of the tree. The MPP
would be very poorly suited for such an algorithm.

On the other hand, the MPP is very well
suited to large numerical problems involving fluid
flow, in which the connectivity of the physics un-
derlying the calculation is usually local° It is also
efficient for image processing, the task for which
it was designed. It would be very premature to
conclude that the nearest neighbor architecture
of the MPP should be abandoned. The simplic-
ity and easy expandability of MPP-like arrays
should make such machines attractive as number-

crunching engines for the foreseeable future.

CONCLUSIONS

Phase space techniques have several advan-
tages over N-body calculations for collisionless
stellar systems: there is no need for a "soft-
ened" gravitational potential; there is no numeri-
cal noise; and the resolution can be made higher
by choosing the grid appropriately. It is also much
easier on machines like the MPP to implement
phase space fluid schemes than to implement effi-
cient N-body schemes.

Phase space techniques do have one signifi-
cant disadvantage compared to particle methods:

they require more computational time and mem-
ory for multi-dimensional problems. For example,
a 3-D problem requires a 6-D phase space calcu-
lation. Since most of phase space is empty, much
of the computing time in such a problem would
be wasted. By comparison, a particle calculation
represents the ultimate Lagrangean grid calcula-
tion: all of the computational effort is expended
where the matter is located.

The MPP is very well suited to fluid schemes,
though some suggestions for improvements in
hardware and software have been made. The

most important change for future MPPs would
be the addition of much more local memory for
each node.

REFERENCES

1. Sellwood, J. A. 1983, J. Comp. Phys., 50, 337.

2. Fujiwara, T. 1981, Pub. A. S. J., 33, 531.

3. Watanabe, Y., et al. 1981, Pub. A. S. J., 33,541.

4. Nishida, M. T., et al. 1981, Pub. A. S. J., 33,
567.

5. Nishida, M. T. 1986, Ap. J., 302, 611.

6. Woodward, P. R., and White, R. L. 1986,
J. Comp. Phys., in preparation.

7. White, R. L. 1986, in proceedings of the Prince-
ton meeting on The Use of Supercomputers in
Stellar Dynamics, ed. P. Hut.

35



N8 7- 26 536
PARTICLE SIMULATION OF PLASMAS ON THE MASSIVELY PARALLEL PROCESSOR

I. M. A. Gledhill L.R.O. Storey

Space, Telecommunications and Radioscience Laboratory

Department of Electrical Engineering

Stanford University

Stanford, CA 94305

ABSTRACT

Particle simulations, in which collective phenom-

ena in plasmas are studied by following the self-
consistent motions of many discrete particles, in-
volve several highly repetitive sets of calculations

that are readily adaptable to SIMD parallel pro-

cessing. We describe a fully electromagnetic, rela-

tivistic plasma simulation for the MPP. The particle

motions are followed in 21 dimensions (two spatial
and three velocity) on a 128 x 128 grid, with pe-
riodic boundary conditions. The two-dimensional

simulation space is mapped directly onto the pro-

cessor network; a Fast Fourier Transform is used to

solve the field equations. Particle data are stored ac-

cording to an Eulerian scheme, i.e., the information

associated with each particle is moved from one lo-

cal memory to another as the particle moves across

the spatial grid.

The method is applied to the study of the non-

linear development of the whistler instability in a

magnetospheric plasma model, with an anisotropic
electron temperature. The wave distribution func-

tion is included as a new diagnostic to allow simu-

lation results to be compared with satellite observa-

tions. Since the physics of self-gravitating systems

is quite similar to plasma physics, incorporation of
free-space boundary conditions and alteration of the

field equations enable our code to be used for the

study of density waves in galaxies.

Keywords: Particle Simulation, Plasma Physics,
Stellar Dynamics, Parallel Processing.

I. INTRODUCTION

The research work described in this paper belongs
to a relatively new category: the exploratory use of

parallel processors for the particle simulation of rar-

efied media. By a 'rarefied' medium we mean one in

which the collisional mean free paths are not neces-

sarily small on the scale of the systems considered,

with the result that it cannot always be approxi-

mated satisfactorily as a continuous fluid. Plasma,

which is the main constituent of the Universe, is a

prime example. Among the very diverse phenomena

that can occur in a plasma, some of the most inter-

esting are highly nonlinear, and therefore difficult

to analyze theoretically. For the plasma theorist,
a powerful alternative and complement to analytic

study is the use of particle simulation in a computer.

'Particle simulation' is the generic term for com-

putational procedures in which a medium is repre-

sented in the computer as an assembly of discrete

interacting particles. In a plasma the particles axe

ions and electrons, interacting through the electric

and magnetic fields that they themselves create. At

each time step in a simulation, the con _ter h_

two distinct tasks to perform: it must update the

positions and velocities of the particles, taking ac-

count of their accelerations due to the fields, and

it must update the electric and magnetic fields, the
sources of which are, respectively, the charge den-

sity calculated from the positions of the particles,

and the current density calculated from both their

positions and their velocities.

Now, even a modest volume of plasma may con-

tain a very large number of particles: in Earth's

ionosphere, for instance, there are typically 10 Is
electron-ion pairs per cubic metre. Computer

simulations necessarily involve much smaller num-

bers, not more than a few times 106 for present-

day single-processor computers ('uni-processors'),
so each of the simulation particles actually stands

for very many particles in the real world; they axe

sometimes called 'superparticles' for this reason.

Besides the reduction in the number of particles,

other simplifications are often made in order to re-

duce the demand for computing time. The common-

est is to reduce the dimensionality, by considering

systems in which all physical quantities vary in only

one or two dimensions. This simplification can be

very helpful, provided that it is authorized by the
symmetry of the problem, but otherwise it is objec-
tionable because it makes the simulation unrealistic.

Another common way of simplifying plasma simu-

lations is to ignore electromagnetic radiation by as-
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suming that the speed of light is infinite. However,
the real world is three-dimensional and the speed

of light is finite, so most of the outstanding prob-

lems in plasma physics that are amenable to parti-

cle simulation will ultimately need to be tackled in

three dimensions/3-D} using a fully electromagnetic

(EM) code.

Probably the most advanced EM particle code in
existence is the TRLdimensional STANford code

TRISTAN, written in assembler language for the

Cray-1 computer; see Ref. 1 for an account of an
earlier version of this code. It follows the motion of

about 5 x 106 particles in a cubical volume divided

up into 1283 cells, i.e., each side of the cube is di-
vided into 128 units. These numbers are not extrav-

agant: if anything, they err on the side of modesty,
and codes with more particles and cells are likely to

be required in the future. Already, however, the pre-

liminary tests of TRISTAN have revealed a severe

problem of computer usage. Though the assembler-

language code has been carefully optimized, a single

time step requires 2-3 minutes of CPU time on the

Cray-1, and a typical simulation requires 500-1000

steps. Difficulty in obtaining the requisite amount
of computer time has already set back several re-

search programs where the use of TRISTAN was

envisaged. This is just one instance of a critical sit-

uation which is now widely recognized, namely that

advanced particle simulation is up against a barrier

due to the speed limitations of uni-processors.

Other advanced approaches to 3-D plasma simula-

tion exist, namely the statistical methods involving

numerical integration of the collisionless Boltzmann

equation or of the Fokker-Planck equation. For-

mally, they are equivalent to following the motion of

a fluid in a 6-D space, which has three dimensions
of velocity as well as the three dimensions of posi-

tion. For a given number of cells in position space,

however, these methods demand even greater com-
puting speed.

The prospects for large increases in the speed of uni-

processors are not encouraging: fundamental physi-

cal constraints on VLSI technology are expected to

limit them to factors of less than 100. For larger in-

creases, we must look to multi-processors, i.e., com-

puters consisting of multiple processors arranged in

parallel architectures, such as the MPP.

Though the MPP was designed originally for pro-

cessing image data from the Landsat satellites, its

architecture, involving a large number of simple pro-

cessors with nearest-neighbor connections, is well

suited to the particle simulation of rarefied media,

and incidentally to fluid simulation as well (Ref. 2}.

The motion of particles or fluid in a given spatial

cell is determined only by conditions prevailing in-

side that cell, and at its boundaries with neighbor-

ing cells. {At least, this is the case so long as we
refrain from making the approximation in which dis-

turbances propagate across the array of cells instan-

taneously}. Hence problems concerning such motion

can be mapped readily onto simple arrays of proces-

sors in which direct connections exist only between

nearest neighbors.

In the present program of research, our initial aims

were to gain enough experience in the use of the

MPP to be able to answer the following questions:

• Which of our plasma simulation problems can be

solved on this type of multi-processor?

• Is there a significant gain in speed, compared with

plasma simulations on a uni-processor?

• Could the capability of the MPP for plasma sim-

ulation be improved in any simple way?

• Would any other type of multi-processor be better

suited to our problems, and if so which?

In sum, we wished to investigate the potentialities

and limitations of massively parallel processors for

plasma particle simulation.

Shortly after the investigation began, however, its

scope was extended to include particle simulation
of problems in stellar dynamics, this in collabora-
tion with Dr. Bruce Smith of NASA Ames Research

Center. Stellar dynamics is very similar to plasma

electrodynamics in respect of its basic physics. Both

plasmas and stellar systems are examples of rarefied
media, and problems concerning either of them are

cases of the classical N-body problem with inverse

square law interactions. Each, of course, also has its

specificity: stellar dynamics involves long-range in-

teractions, from which plasmas are exempt because
of Debye shielding; plasma electrodynamics involves

magnetic fields, which have no counterpart in non-

relativistic stellar dynamics. Nevertheless, the two

fields have much in common, so naturally there are
close similarities between the methods of particle

simulation that have been developed for each of

them. For the same reason, many possibilities exist

for cross-fertilization between them, and for joint
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efforts to solve common difficulties. These consid-

erations led us to extend the scope of the program

in this way.

The present paper is an account of the work per-

formed during the first year. Section 2 outlines

the two physical problems, one in plasma electro-

dynamics and the other in stellar dynamics, that

have been chosen for simulation, and how we are ap-
proaching them; for simplicity, both simulations are

in two spatial dimensions instead of three. Section

3 describes the numerical techniques used for the

plasma simulation, and Section 4 the modifications

required for the gravitational simulation. Section 5

indicates how these various algorithms are being im-

plemented on the MPP, while the current status of

the work is described in Section 6. Finally, in Sec-

tion 7, we draw some provisional conclusions and

sketch our plans for the future, in both the short
and long terms.

2. PHYSICS PROBLEMS

Recapitulating, our immediate objectives are to pro-

gram the MPP to solve, by particle simulation, a
significant problem in each of the two fields men-

tioned above, namely stellar dynamics and plasma

electrodynamics.

The simpler of the two problems is the one in plasma
electrodynamics, which concerns the nonlinear de-

velopment of the Doppler-shifted electron gyroreso-
nance instability, or 'whistler instability' for short.

It is a very suitable problem for solution on the

MPP, for several reasons. Firstly, it is one in which

only the electrons are involved, while the ions can

be treated as an inert neutralizing background. The

simulation algorithms are simpler if only one type

type of particle needs to be represented. Secondly,

the whistler instability is of the velocity-space va-
riety, so it can occur even in a spatially uniform

plasma. By assuming uniformity as an initial con-

dition, we should succeed in sharing the comput-

ing load evenly between the different processors.

Finally, it is an electromagnetic instability, which

means that field disturbances originating in any one
spatial cell propagate to the other cells at finite ve-

locities. Such propagation can be modeled read-

ily on the MPP, in which each processor is con-
nected only to its four nearest neighbors. Despite

its apparent simplicity, the nonlinear evolution of

the whistler instability has not been simulated be-
fore in the conditions in which we intend to do so.

This problem has applications both to space and to
fusion plasma physics.

To the best of our knowledge, all previous simu-

lations of the whistler instability have been one-

dimensional. The most recent, by Bharuthram and

Baboolal (Ref. 3), w.ere in several other respects

quite similar to those that we are proposing. Thus,

for instance, these authors used a fully electromag-
netic code, gave the electrons a bi-Maxwellian ve-

locity distribution at the outset, and followed the

growth of the instability into the nonlinear regime.

They obtained a variety of interesting scientific re-

sults: for instance, the wave mode that, during

the initial linear phase of the instability, grew most

rapidly, died out in the post-saturation pha_e, and

ultimately was replaced by a slower-growing mode

which dominated the wave spectrum at the end of
the simulation.

Using our MPP code, we intend to study the nonlin-

ear evolution of the whistler instability under much

the same conditions, except that our simulations

will be performed in 2½-D (i.e., in two spatial dimen-

sions, but with all three components of velocity).
We expect that the increase in dimensionality will

lead to qualitatively new scientific results: in par-

ticular, we anticipate that waves will be generated

over a broad frequency band, with their wave nor-

mal directions spread widely around the direction
of the steady magnetic field. We shall study how
the characteristics of the wave field in the nonlinear

regime depend on the initial plasma conditions.

For these simulations,the code willhave to be en-

hanced with sophisticateddiagnostics,especiallyfor

the fields.The factthat italready includes a two-

dimensional FFT should be very helpfulin thisre-

spect,enabling wave power spectra,dispersionre-

lations,temporal autocorrelationfunctions,etc.,to

be derived by existingtechniques,developed previ-

ously for serialprocessors.

Additionally,we propose to employ a new diagnostic

procedure,hithertoused only foranalyzingwhistler-

mode wave data from satellitesin the Earth's mag-

netosphere. This isthe so-called'wave distribution

function'(WDF), which specifieshow the wave en-

ergy densityisdistributedwith respecttofrequency

and towave normal direction(Refs.4-7). The ready

availabilityof thisdiagnosticwill,in the future,fa-

cilitatecomparisons between the resultsfrom nu-

merical simulationsof the whistler instability,and

observations of natural whistler-mode wave fields
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generated by the same instabilityin space.

In stellar dynamics, we shall investigate the stability

of an axisymmetric system (galaxy or protoplane-

tary nebula}, albeit that problems of this type have
been simulated previously on conventional comput-

ers. The interest of repeating one of these simula-
tions on the MPP is that it will introduce some of

the difficulties that are bypassed in the whistler in-

stability problem. Although, again, the dynamics
involve only one type of particle, the absence of a

neutralizing background of particles of another type

means that the inter-particle forces are not shielded

in any way, so they are truly long-range. For this

reason, all physically significant systems are spa-

tially non-uniform. Finally, the times required for

gravity to propagate across such systems are very
small compared with the time scales characteriz-

ing their dynamics (e.g., the rotation period of a

galaxy), so little accuracy is lost and much comput-
ing time saved by assuming that the propagation

is instantaneous. Thus, besides the physical inter-

est of this problem, its simulation on the MPP will

have interesting computer science aspects.

3. NUMERICAL TECHNIQUES

Details of the particle-mesh method may be found in

the standard texts on plasma simulation (e.g., Refs.

8-10}. We summarize here the techniques chosen
for the MPP code.

The purpose of the simulation model is to follow the

self-consistent dynamics of fields and particles for

several thousand time steps. Fields, densities and

other spatial functions are stored as values at points
on a grid. Initially, our simulation is restricted to

two spatial dimensions for simplicity. The motion

of a large number of particles {of the order of 105
to 106), each representing many particles in the real

world, is followed through successive time steps.

Initially, particles are arranged in positions (x, y)
that result in the required plasma configuration. For

our present purposes, uniform density is specified.

Particles are assigned random velocities (vx, vy, Vz)
according to a Gaussian distribution with suitable
thermal and drift velocities.

As isusual in numerical simulations,point particles

are replaced by cloudsof charge to prevent impulse-

likeinteractionswhich giveriseto collisionaleffects

(Ref. 11). Long-range particlepotentialsare re-
tained in the Coulomb form to model collectiveel-

fects, but a shape function

1
S(r} -- 2_,2 exp(-r2/2a 2) (3.1)

is introduced so as to 'soften' the particle potential

within the range r < a (usually of the order of a
Debye length).

In order to calculate the fields set up by the charges,

it is necessary to obtain the charge and current den-

sities p and J on the spatial grid. A simple al-

gorithm is used which produces the same results

as the Subtracted Dipole Scheme (Ref. 12). The

charge density array is compiled from the superpo-

sition of a unit charge at each particle's nearest grid

point (NGP), plus small contributions at its four
neighboring grid points which reproduce the dipole

moment of the charge relative to its NGP.

The electric and magnetic fields (E and B) axe gov-
erned by Maxwell's equations. With the inclusion

of the shape factor, Amp_re's and Faraday's laws
become

aE(r)
at

and

-- = c[V × B(r) - 4rJCr }* SCr}] (3.2)

aB(r)

Ot
- cv (3.3)

where the asterisk denotes convolution and c is the

speed of light. Gauss' law,

V.E(r) = 4rp(r) * SCr) (3.4)

is satisfied by the initial conditions and will continue

to hold if the continuity equation is satisfied. How-

ever, microscopic inconsistencies between p and J

arise due to the use of the mesh (Ref. 13). To pre-
vent the resulting growth of noise in the fields, it is

common to split the electric field into longitudinal

and transverse components Et and Et (Ref. 9), us-

ing Gauss' law to obtain El and Faraday's law to

deduce Et. It is thus necesary to solve both ellip-

tic and hyperbolic equations in this system; the use
of Fourier or Hartley transforms provides a simple

solution, as well as helpful diagnostics.
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The fieldequations are integratedin time using a

leap-frogmethod with time step At. Fouriertrans-

forming (3.2),(3.3)and (3.4)and includingthe time

differencinggives

1

E_'(k)= E_'-1(k)+ cAt{ik× B"-_(k)-

1 1

4_SCk)[J"-_(k)- (J"-_(k).klk2)k]} (3.S)

1 1

B"+_(k)= B"-_(k)-icAtk×E_'(k)(3.6)

E_(k) = - 4_rpn(k)SCk)klk 2 (3.7)

The superscriptsdenote the time step at which the

fieldisknown:

fn = f(to-f"nat) (3.8)

The stabilityof the method is governed by a

Courant-Friedrichs-Levy (CFL) condition:

(km_. cAt) 2
< I (3.9)

where kmax isthe highest spatialfrequency occur-

ring inthe simulation.

Once the fieldsare known on the spatialgrid,the

forceson the particlesmay be calculatedby inter-

polation.The relativisticequation ofmotion is

dp ( q )p×B7f = qE+ _-_ (3.10)

where p isthe relativisticmomentum, mo isthe rest

mass, and

_t = 1/x/1 - v2/c 2 (3.11)

A problem arisesbecause of the appearance of the

momentum in the vector product inequation (3.9).

A well-establishedsolutiondue to Boris (Ref. 14)

isemployed: the momentum isadvanced using the

electric field only for half a time step, then a rota-
tion of the resulting intermediate momentum vector

by the magnetic field is carried out and finally the

second 'half-push' by the electric field is performed.

One of the advantages of applying the full relativis-

tic treatment is that .a top speed for both field and

particle propagation is provided, and can easily be

tailored so that the CFL condition (3.9) is obeyed.

Advancement of the particles' positions closes the

main simulation loop, since the charge and current

densities may be evaluated again.

4. GRAVITATIONAL SIMULATION

Particle-mesh simulation is a well-known technique

in the investigation of the evolution of spiral galaxies

(Ref. 8). Since the algorithms for gravitational sim-

ulations are so closely related to those for plasma, it

seems worthwhile to construct them in parallel. The

main differences between the programs are summa-
rized here.

The gravitational potential ¢(r) is used instead of
the fields. It is governed by Poisson's equation

V2¢(r) = 4rGp(r) (4.1)

where p is the mass density and G the gravitational

constant. Solutions are obtained by convolving the

Green's function for this equation, i.e., the single

particle potential, with the particle number density

function p/too. The point particle potential

Grno
¢ = (4.2)

r

is replaced by the 'soft' potential

Gmo (4.3)
Cp = _ -[- a2

so that shape factors do not appear explicitly in

this formulation. The convolution is accomplished

in Fourier transform space.

For modeling isolated galactic systems, free-space

boundary conditions are imitated by confining the

particles to 1/4 of the grid, a square of sides L, and
truncating Cp beyond x = ±L/2 and y = ±L/2
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(Ref. 8). Although periodic images of the simu-

lation plane are still produced by the fast Fourier

transform, they can no longer influence each other

across the empty buffer zone.

5. IMPLEMENTATION ON THE MPP

It will be seen from the above description that there

are two main areas of the simulation algorithm with

a high degree of parallelism: handling the fields

and densities on the spatial grid, and processing

the large number of particles moving though the

space. This dichotomy appears in the data struc-
ture adopted for the simulation.

In the simplest approach, a spatial grid of 128 x 128
cells is mapped directly onto the two-dimensional

array of processing elements (PE's), as illustrated
in Figure 1. The local memory holds p, J, El, E_

and B associated with the corresponding grid point.

The contents of the array unit (ARU) memory may

be shifted across the network and wrapped around

at the edges; extensive use is made of this feature in

the fast Fourier transform for solving the field equa-

tions. Because it is a global method, the FFT has

the disadvantage of requiring communication be-

tween distant processors in the network. An attrac-
tive alternative is to employ local methods of field

solution, in which each processor would demand

data from its nearest neighbours only (Ref. 15).

However, the FFT isretained for the present as a

usefulgeneral tool,since itsnumerical stabilityis

well understood, and also itprovides standard di-

agnostics.

The particle data structure presents a more inter-
esting problem. Provision must be made for the

information associated with the particles to move

across the network in order to interact with appro-

priate data on the grid. Two alternative schemes,

which may be used in some combination, exist.

In one disposition, information for a given particle is

stored in the memory location corresponding to its

position on the grid (Figure 1). Local calculations
of densities and forces may then be made without

communication beween processors. However, the

packet of information must be moved when the par-

ticle travels to a new cell in the grid. This method

has the disadvantages that memory overflow may

occur in some locations, and that the workload is

not distributed evenly among the processors unless

the particle density is more or less uniform.

ARU memory

particle

planes

global

variables

simulation

grid

I

II1__ i i i i i

IIIIIIII

IIIIIIII

IIIIIIII

/ _ u/O _. o/n/o/u o/o U/oOlUo/

/o/_yo% / /6/o/O/oO/O/.:
X

Figure 1. Mapping the particle data to memory.

Each local memory contains data for particles in

the corresponding cell in the simulation plane.

The alternative is to store particles in a uniform way

in memory, in arbitrary locations. Particle and/or

field data must then be transported across the net-

work to a common processor when calculations in-

volve both types. This scheme should prove useful

when large density variations exist or when particles

move though several cells per time step; Hoshino

and Takenouchi (Ref. 16) proved a variation of it
to be the more efficient scheme in a particle-particle

molecular dynamics model on the PAX parallel pro-
cessor.

In the case of an initially homogeneous plasma, how-

ever, large density differences are not produced ex-

cept in extreme circumstances, and particles may
be restricted from traveling more than one cell in a

time step by setting the speed of light to this value.

For our present purposes, therefore, we decided to
use the first of the two schemes outlined above. The

scheme also has the attraction of being a 'natural'

mapping, and for this reason a variant of it was

used in a 3-dimensional particle-mesh simulation of

galactic gas dynamics on the ICL DAP by Johns

and Nelson (Ref. 17).
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Figure 2 shows a flow chart outlining the algorithm.

Calculations are carried out in two major proce-
dures, titled 'Particles' and 'Fields'. The only global

I ENTRY I

_PARTICLES _

I particle initialization I

Bj:i=oPr_Smh an ager
density calculation _1

STAGING MEM. I

particle
co-ordinates

_FIELDS _

forward FFT

Gauss' Law

Maxwell's equations
truncation

reverse FFT

I E_, E_, B'*+½ I

field initialization

_=_ save old fields

I

next time step

Figure 2. Flow chart for the plasma simulation al-
gorithm.

parallel arrays that have to be carried between these

are the variables required by both: p and J (the

output of 'Particles' and the input of 'Fields'}, and

El, Et and B {the output of 'Fields' and the input
of 'Particles'}. These data are stored in the ARU

throughout the main time loop.

Particle data exist in the ARU only as local vari-

ables in the procedure 'Particles', and are stored

in the staging memory (SM} during the rest of the

execution. The procedure contains a loop which is

executed once for each plane of particle data in the

SM, as follows. A 'particle plane' is moved from

the SM to the ARU. Values of the magnetic field

and the total electric field axe interpolated in each

cell at the particle positions (x, y}. {Operations are

masked out in cells containing no particles}. New
velocity components are obtained by applying the

Boris push, and the position is updated with the

new velocity. The new co-ordinates {x, y} axe tested

to see whether the pax. ticle has moved to a new cell

on the simulation grid, and a moving direction D

assigned accordingly. The speed of light is normal-

ized to one cell per timestep, so that no particle

can move further than to one of its eight nearest

neighbours; hence there are nine possible values of

D, including the null move.

An innerloop isthen carriedout foreach direction.

The particleswith appropriate D are copied into a

workplane which isshiftedtothe new location.The

densitiesp and J are updated with the new informa-

tion. Distributionfunctions are accumulated when

needed via a cascade sum. The workplane contents

are then copied to the top of the stack of particles

alreadymoved. Iffullplanesexistinthe stack,they

are sent to the SM. The next SM plane isthen re-

trieved.Afterthe lastplane has been processed,the

remaining particleplanes are written out to the SM

to clearthe ARU of particledata.

In a fully electromagnetic program, the field solver

requires nearly all the available ARU space. The 1-

dimensional FFT that we use is based on a straight-

forward Cooley-Tukey algorithm (Ref. 18}, and op-
erates on 128 elements along either rows or columns.

Equations 3.5 to 3.7 are solved in transform space

using the El, Et, and B values from the previous

time step.The shape factorand coefficientsinvolv-

ing k are recalculatedateach time step tominimize

the space required for globalvariables.Transverse

fieldsare truncated for Irgreater than some value

specifiedby the user tomeet the CFL condition3.9.

The spatialvariationofone component of the field

ofa singleparticleisshown in Figure 3.

Particle initialization is accomplished in 'Particles'
by setting up co-ordinates in the ARU plane by

plane. A random number generator based on a ran-

dom bit-plane generator developed at NASA God-

dard Space Flight Center is used to initialize veloc-

ities. Up to twelve uniformly distributed random

numbers are added to produce a distribution func-

tion closely approximating a Gaussian. Field ini-

tialization takes place through the inclusion of 'old'

fields in Maxwell's equations: external fields are in-

troduced in this way.
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Figure 3. Spatial variation of the z-component of the longitudinal electric field due to a charge with radius 
1 grid cell placed at the center of the grid. Units are arbitrary. 

6. STATUS OF THE C O D E  

Considerable time has been spent in developing ba- 
sic tools such as the FFT, the random number gen- 
erator, input/output routines, etc. These are now 
in working order. The particle memory manager is 
complete and is being tested with the particle ini- 
tialization. The calculation section of ‘Particles’, 
which contains the interpolation, the Boris push, 
the distribution function calculation and the density 
accumulation, is in the final stages of development. 
The procedure ‘Fields’ awaits only the debugging of 
the transverse field section; preliminary results have 
been shown in Figure 3. Thus, as we go to press, 
the code appears to be close to final assembly. 

7. C O N C L U S I O N S  

Since we have not yet performed a complete sim- 
ulation on the MPP, it would be premature to 
try to give any firm answers to the four questions 
raised in Section 1. Nevertheless, we feel that suffi- 
cient progress has been made to allow us to express 
opinions as to what the answers are likely to be. 

For instance, it is already clear that the two physics 
problems we have chosen, one in plasma physics and 
the other in stellar dynamics, can be simulated on 
the MPP without posing any difficulties of princi- 
ple. The main practical difficulty is likely to be that 
of load balancing, i.e., of ensuring that the com- 
putational work load is shared evenly between all 
the processors in the array. In our present com- 
putational scheme, where the simulation domain 
is mapped directly onto the processor array, load 
balancing becomes difficult whenever the physical 
medium is inhomogeneous. Thus our stellar dy- 
namics problem is more difficult, in this respect, 
than our problem in plasma physics, as may be seen 
from their descriptions in Section 2. Other plasma 
physics problems, however, such as those involving 
magnetically confined plasmas, would also be sub- 
ject to this difficulty, which we perceive as the main 
one to be overcome in order that the potential of 
the MPP for particle simulation of rarefied media 
may be fully realized. The foregoing remarks relate 
to the first two questions raised in Section 1. 

As regards the third question, we can already sug- 
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gest several features that might be incorporated into
a second-generation MPP, so as to improve its capa-

bility for particle simulation. There is a clear need

for a larger random-access memory (RAM) associ-

ated with each processing element (PE}, particu-

larly if some future simulations are to be made in

3-D. At present, with only 1 Kbit of RAM per PE,
we would be restricted to 2-D simulations with fewer

than 10 particles per spatial cell, were it not that we

are also using the staging memory for storing data
on the positions and velocities of the particles; how-

ever, the use of the stager for this purpose entails

a speed penalty. Another measure that might be

taken to increase the computing speed is to intro-

duce some degree of parallelism into the PE arith-

metic; the present capability of varying the word

length by 1-bit increments would probably have to

be sacrificed, but this feature is less important in

particle simulation than it is in image processing.

On the fourth and last question, as to the rela-
tive merits of the MPP architecture versus possible

alternative architectures in the application to rar-

efied media simulation, we are now doubtful as to

whether whether our present research program will

yield a clear-cut answer. At the outset, we felt that

the very simple way in which our square simula-

tion domain can be mapped directly onto the square
array of PE's made the MPP architecture a natu-

ral choice, but now we are less sure, in view of the
acuteness of the load-balancing difficulty mentioned

above. In any case, a final decision could not be

taken until after some experimentation with other

architectures such as the hypercube.

These considerations govern our plans for the fu-
ture. In the short term, continuing the present re-

search program through a second year, we shall en-
deavor to fully realize our immediate physics and

computer science objectives by exploiting the pos-

sibilities of the MPP to the utmost. The physics

objectives are to achieve realistic 2-D simulations

of the chosen plasma and gravitational phenomena.

The computer science objectives are to improve the

simulation algorithms, notably by solving for the

fields by direct numerical integration of Maxwell's

equations rather than by transform methods. More-

over, in order to promote load balancing, we shall

investigate the use of sort/merge routines to man-

age the particles, permitting the data concerning
them to be stored in PE's other than those that

correspond directly to their spatial positions in the
simulation domain. Without going so far as to store

these data in arbitrary locations, we feel that it may

be helpful to allow them a certain latitude. This

more flexible storage scheme should certainly help to

reduce load unbalance resulting from random fluctu-

ations of particle concentration in a statistically uni-

form medium, such as the plasma considered in our

whistler instability simulation; it is unlikely, how-

ever, to be able to cope with unbalance resulting
from large-scale gradients of particle concentration,

as occur in our gravitational simulation.

In the long term, more powerful solutions to the

problem of load balancing will have to be found.

Probably the sole viable general solution is to di-

vide up the simulation domain with a non-uniform

grid, which is then mapped onto the processor array

either directly, or with a certain degree of latitude

as described above. If the large-scale distribution of

particles is likely to change in the course of a sim-

ulation, then the grid may have to be adaptive as

well. We hope to take part in these developments,
which could be tried out on the MPP in its present

form. Only when this problem has been adequately

dealt with can a fair comparison be made with other

architectures. We anticipate that the comparison is

likely to favor the MPP architecture, and to provide

strong motivation for the development of a second-
generation MPP specifically for particle and fluid
simulation.
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A S_UDY OF THE XY MODEL BY THE MONTE CARLO METHOD

Peter Suranyi and Paul Harten

ABSTRACT

The MPP is used to perform Monte Carlo
simulations for the two dimensional XY

model on lattices of sizes up to
128x128. A parallel random number

generator was constructed, finite size

effects were studied, and run times

were compared with those on a CRAY X-MP

su_ter.

Keywords: XY model, Spin System, Monte
Carlo, Randcm Number Generator

BACKGRDUND

XY model

The XY planar model is a two

dimensional latticework of interacting

spins. Each spin is a vector of unit

magnitude in the XY plane. The

Hamiltonian of the system is

H = -J Z Si'S j = -J Z cos(si-ej) (i)

where J is the spin-spin coupling, Si

is the spin at site i, 8i is the angle
that Si makes with an arbitrary axis,
and the summation is over nearest

neighbor pairs.

Unli_ the Ising model which has a

finite mean magnetization or long range

order for temperatures below a certain

critical temperature, the XY model has

a different type of behavior in that

there is no long range order for low
temperatures. However, it does seem to

have a critical temperature Tc where it
goes through a phase transition.

Kosterlitz and Thouless show (ref.l)

that there exists certain topological

defects in the XY model which govern
its unusual behavior at low

temperatures. These defects are

vortices of spin. Going around any

closed path in the system the change in

spin from site to site will add up to

an integral multiple of 2=. This

number is a constant of the system so
that whenever a vortex is created.

Below the critical temperature, vortex-

antivortex pairs are bound and stay

close together. Above the critical

tenloerature there is enough heat-energy
in the system to break the bond and the

vortices go off independently. This is

the phase transition that the system
goes through. It is under a class of

what are known as defect mediated phase
transitions.

Statistical mechanics

Using a heat bath algorithm, the

probability of any state i of the
system is given by the Boltzman factor

P(i) = exp(-_Hi) = exp(-Hi/k2 ) (2)

where Hi is the Hamiltonian of the

system, k is the Boltzman constant, and
T is the temperature. States of the

system are values of 8 at each of the
sites. It follows then that the

partition function is given by

Z = E exp(-#Hi) (3)

where the summation is over all states

of the system. The expectation value

of any variable x is given by
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<x> = Z-I 7_ (x)exp(-_Hi) (4)

where again, the summation is over all

states of the system.

Monte Carlo

The Monte Carlo method approximates

these expectation values by averaging

the value of x over a randcm sampling

of states near equilibrium, these being

the states of highest probability.
Since the values that the 8 's take on

are continuous, the summation over all

states is an integration from 0 to 2=

over all 8. The random sampling near

equilibrium then represents evaluations

of this integral at a very sharp

exponential peak.

The states near equilibrium are arrived

at through a Markovian process where

the transitional probability of going

from state 1 to state 2, Q(I,2),

follows the detailed balance condition

Q(I,2)P(1) = Q(2,1)P(2) (5)

where P(1) and P(2) are the

probabilities of state 1 and 2

respectively.

The Metropolis method used sets

Q(1,2) = 1 if the energy of state 2 is

lower than the energy of state i, and
sets

Q(I,2) = P(2)/P(1)= exp(-$AE) (6)

otherwise. Here AE is the change in

energy from state 1 to state 2. A

little reflection will show that this

indeed does fulfill the detailed

balance condition. Not only does this

method allow the system to approach the

state of lowest energy (equilibrium)

but it also allows the system to get

out of any local minimum that it might
find itself.
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XY MODEL PROGRAM

System update

A 128x128 parallel array of real

numbers is defined where the elements

take on values from 0 to 2_. This is a

lattice of spins and the numbers

represent the angle 8 of the spin at

that site with respect to scme axis.

When any site is updated it depends

only upon its four nearest neighbors so

that for the purpose of updating there

are actually two separate sub-lattices

in a checkerboard pattern. One sub-

lattice is updated at a time so as not

to affect the updating of other sites.

This conditional update is done, quite

naturally, with a checkerboard mask.

For a site to be updated the 8 values

of its four nearest neighbors are

brought into memory locations at that

site using the IK3TATE function. Along
the sides of the lattice the ROTATE

function brings in the 8 values of the

opposite sides, thus giving the system

periodic boundry conditions. A trial

spin is arrived at by randomly adding a

value AS, where -4 < A8 < _, to the

spin at that site. The value of 4 is

optimized for the fastest convergence.

The difference in energy between the

trial state and the original state is

given by

AE = Ht-H o = -J Z cos (et-ek)

+J Z cos(eo-ek) (7)

where the t and the o subcripts are the

trial spin and the original spin, and

the summation index k is over the four

nearest neighbors.

A random number R is then generated, if

the energy of the new state is lower or

if the random number R < exp(-_AE) then

the trial spin is kept, otherwise it is

away. This whole process is

done for all sites on the sub-lattice

in parallel. Following this, the

ccmplement sub-lattice is updated in
the same manner and we have a new state



of the system near equilibrium.

Expectation values

The system is initially in a given

state usually one of zero temperature

where all of the spins are aligned.

Then it is in effect brought into

contact with a heat bath of temperature

T. A warm-up period follows and the

system is allowed to came to

equilibrium at the temperature T. For

the XY model, this warm-up takes on the

order of i0,000 to 20,000 lattice

updates. Sample values of x are taken

every i00 updates to promote
independence between values. Usually x

will be a scalar property of the system
so that the SUM function is used at

this step.

The total number of samples taken are

broken up into several equal divisions

and x is averaged in each of these
divisions. Frcm these divisional

averages both the total average of x
and its standard deviation can be

calculated.

Random number generator

The basic idea of the algorithm used to

generate a plane of random numbers in

parallel is as follows. Begin with two

pri_e numbers a,p and set up an integer

parallel array with a different power

of a at every site where the pc_ers

range frc_ 1 to 16384 (128,128).

Multiplying every element by the

constant a**16385 will always give a

different power of a.

The next step is to take all numbers

modulo p so that the randomness ccmes
in as a**m mod p where m is some

integer. Since

p =

[(a rood p) (b mod p)]mod p, (8)

If we take modulo p at every step we

will always have a**m rood p no matter
how large m is.

Each time after multiplying by a**16385
mod p we have a new plane of rar_em

integers from 0 to p. To have a plane

of random real numbers from 0 to i, it

is only necessary to divide by p.

This is an example of the parallel

random number generator setup, which is

done only once, and the generator

itself. Here a_EED, p=MAXRND, and

IRND is the parallel array of integers:

SEIRND (VAR SEED, SEEEM: INIgZER

;VAR IRND:IIAT) ;

VAR I,J:INTEGER;
EEGIN

SEEEM: _EED;
FOR I:=0 TO 127 DO

BEGIN

FOR J:=0 TO 127 DO

BEGIN

WHERE (_W__DEX=I)

(_L__DEX=J) DO n_D:_;
SEEEM:_EEEM*SEED MOD MAXRND;

END;
END;

END;

ROW INDEX and OOL INDEX must be

declared as parameters in the
line. S_**16385 mod p

RAND is a parallel array of real
numbers.

GENRND (VAR SEEEM: INTEGER;

VAR IRND:IIAT;VAR RAND:RIAT) ;
_EGIN

IRND: :13 :=ROTATE (IRND: :13,1,0) ;
IRND:=IRND*SEEEM FDD MAXRND;

RAND'--IRND/MAXRND;
END;

The bit plane ROTATE will be explained

shortly.

RESULTS

Fourier components

For the purpose of finding some good
seeds to use in this psuedo-random

number generator, there are a few
constraints to consider. It is
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necessary that p < sqrt(2**31-1) in
order to insure that there is no

erflcw. Also, the fourier ccmi0onents

of any random number generator must

give results that are close to 0.

A program was written to look at the
first i0 sine and cosine fourier

components. From the results of this

program it became clear that the

multiplication by a**16385 rood p was

not enough to insure randomness. But,

the additional operation of rotating

the thirteenth bit of every number in

the random integer array one element

north, did much to improve the
randomness.

Two seeds found to give very good

psuedo-randcm distributions are a=16307

and p=16309. Figure 1 shows the

fourier components of the distribution

generated from these seeds. The dashed

lines on either side of zero represent

one standard deviation assuming perfect
randomness.

Given a perfectly random distribution
and an infinite amount of numbers

generated, the fourier cumponents would
be zero. Since finite amounts are

being dealt with, there will be

fluctuations away from zero even with

perfectly rar_cm distributions. The

points will do a randcm dance around

zero. It is clear that these two seeds

come very close to giving a
distribution.

More to the point is the result of

using this psue_o-random number
generator in simulating the XY model.

XY model simulation

The XY model simulation program was run

at various values of _ near the phase

transition. Figure 2 shows the

relation of the expectation value of

nearest neighbor correlations,

<cos(si-Si+l> , to _. The error bars

are smaller than the points themselves.

The icier curve is the result of a

128x128 lattice of spins and the upper

5O

curve is the result of a 16x16 lattice

of spins.

The 16x16 lattice of spins was run for

the purpose of _ison with some

previous results done on a Cray X-MP.

The results from the Cray are also

shown in figure 2 and are sitting under

the same points as generated by the

MPP. This is exact agreement.

The distance between the curves of

different sized lattices ccme from what

are known as finite size effects.

These are mostly due to the fact that

in addition to direct spin-spin
interaction there is also interaction

coming around periodic boundries. In

an infinite sized lattice, this would

not happen.

The two curves ccme together at

approximately _ = 1.15. This is where

the phase transition is taking place.

Theoretical predictions (ref.2) give

_c = 1.14.

Cray-1 C_J time

From similar runs of an XY model

simulator written for a Cray X-MP, very

rough calculations show that it takes

1.36E-3 secs of CRAY-I C_J time per

lattice update. On the MPP,

calculations show that it takes 1.86E-4

secs per lattice update. This is

approximately seven times faster than
the CRAY-I time.

OONCLUSION

The MPP is a very useful tool in

simulating the two dimensional XY

model. Properties of the XY model can

now be investigated which are

realistically impossible to do anywhere

else.
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Abstract

Our main purpose is to describe a very efficient MPP

algorithm for performing one important class of Ising

spin simulations. Results and physical significance of
MPP calculations using the method described here

will be discussed elsewhere. However, we will make a

few comments on the problem under study and report

briefly on results so far. Ted Einstein has provided us
with much guidance in interpreting our initial results

and in suggesting calculations to perform.

1 Introduction

Ising spin simulations occur in many areas of physics
and have attracted the attention of researchers since

the earliest days of electronic computation (Ref. 4).
They provide a very good example of how, from the

point of view of algorithm design, two apparently dis-

parate problem types can be attacked by almost the
same techniques. Some classes of Ising spin calcu-

lations can require speeds far in excess of anything
currently available.

The basic model is easily described. The spin vari-

able a(i) is specified at the nodes of a uniform grid

in two (or three) dimensions. At each grid site the

spin can take on only the values +1 and -1. Spins

are related to one another via the energy expression
given by the Hamiltonian

{i.J}

where {i, j} ranges over all nearest neighbor pairs of

sites. In an £ x t square lattice, at site i we have the

local energy expression

E(i) -= -a(i)× (a(i+ l)+ a(i-l)

+,,(i+ l)+ ,,(i- l)).

In most cases periodic boundary conditions are im-

posed, so that i + 1 and i + t are to be determined
rood l.

One wishes to compute various averages with re-

spect to the probability P(C) for a configuration of

spins, C, to occur. The "classical" algorithm for using
Monte Carlo methods to sample configuration space

is due to Metropolis, Rosenbluth, Rosenbluth, Teller

and Teller (Ref. 4), (called the M(RT) 2 algorithm
for short). It consists of a series of moves through

configuration space, making use of the fact that for

each C, P(C) cx exp(-JE(C)/kT). Here E(C) is the
energy associated with configuration C, J is the cou-

pling constant for the problem under study, T is the
temperature and k is Boltzmann's constant. A site i

is chosen at random and the change in energy AE(i)
which would result in reversing the spin at that site
is determined. Since only the site i and its four near-

est neighbors are involved, it is easy to see that the
change in energy is

AE(i) = (E'(i) - E(i))

+(E'{i + 1) - Z{i + 1))

+(E'(i- 1) - E(i- 1))

+(E'(i + t) - E(i + l))

+(E'(i - t) - E(i - l))

= -4E(i)

If AE(i) < O, then the move is "accepted" and the

signof .(i) is reversed.In caseAE(1)> 0, the move
is accepted with probability exp(-JAE/kT).

It can be shown that the M(RT) 2 algorithm de-

fines a Markov process which samples the "correct"
(Boltzmann) distribution of configuration of spins.

However, for a large system several hundreds of thou-

sands, or even millions of updates of each site must be

performed in order to approach a single equilibrium

configuration, and often averages over many such con-

figurations are required. Most of the work is in gen-
erating the random numbers, since as many as 1012
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moves of sites may be required in a single simulation.

We will delay discussion of this critical aspect for the

moment, and concentrate on how to modify M(RT) 2

in order to get an algorithm well suited to the MPP.

Later we explain why this algorithm is also well suited

to vector machines, and we then describe one method

for vectorizing the generation and testing of random
numbers.

2 Algorithm

The MPP consists of a square array of 128x128 single-

bit processors, having an SIMD architecture. Proces-
sors are interconnected via nearest neighbor bonds

and periodic boundary conditions is one possible con-

nection pattern for border processors. Because of
its SIMD architecture, the MPP is extremely well

adapted to image processing applications and, in fact,

one point we hope to make is that, so far as algorithms

are concerned, Ising spin simulations are a type of im-

age processing problem.

One is tempted to think of associating processors

with spin sites in a one-one manner. However, this
does not make very good use of the machine, since in

the M(RT) 2 algorithm, only one site is examined for
each move. Instead of mapping sites to processors in

the obvious way, we instead notice that the expres-

sions for the energy associated with a site are similar

in form to the central difference approximation used

to solve the Poisson equation,

_V2u - p.

In the Poisson case, a grid site and its four nearest

neighbors are related through the finite difference ex-

pression

-,,(i - ,) - - 1}

+ 1) - u(i ÷ t) = (,a=)(Av) • p(O.

A common strategy used in implementing iterative

methods for solving the Poisson equation is to use

the "red-black ordering" depicted below:

R B R B R B

B R B R B R

R B R B R B

B R B R B R

Since no pair of red sites axe nearest neighbors, all red

sites can be updated "simultaneously". These values

can then be used to update the black sites, and so-

forth, alternating on each iteration between red and
black sites.

The same idea can be applied to modify M(RT) 2.

Spin flips can be attempted at all red sites or at all

black sites. This is a different Markov process than

M(RT) 2 but the same distribution is sampled. Of

course it is the dynamical aspects which are of inter-

est now, rather than merely the converged solution.
This use of colors is part of the so-called multi-spin

algorithm (Ref. 5). In order to implement multi-spin
on the MPP, all sites of a single color can be associ-

ated with a single MPP plane of 128x128 processors.

The problem to which we have applied multi-spin is

slightly more complicated than that of attempting to

flip single sites (Glauber dynamics). Instead we want

to try to exchange the spins of a pair of neighboring

sites. These spin exchanges or Kawasaki dynamics

calculations can be used to study phenomena such as

growth of magnetic domains (Ref. 2).

Because spin exchanges are to be attempted, eight
different sites are involved in each move. For exam-

ple to interchange sites kx and k2 we have all of the

depicted bonds to consider. The change in energy is

J3

k_

J2

the sum of changes over all eight sites and is given by

the expression

&E = -
, + +

- - ,,(is)} •

In order to apply the multi-spin idea enough "col-

ors" must be assigned so that no two sites of the same
"color" are involved in the same move. This can be

accomplished by partitioning sites into sixteen groups
as is shown below:
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15 16 13 14 15 16

11 12 9 10 11 12
7 8 5 6 7 8

3 4 1 2 3 4

13 14 15 16

Each group is now associated with a single 128x128

MPP bit plane, so that a 512x512 simulation can be

handled in a straight-forward way.

Notice now that the part of the expression for

AE which is enclosed in brackets can take on only

seven distinct values, namely {-6, -4, -2, 0, 2, 4, 6).

The MPP array consists of single-bit processors and

Boolean operations can be done simultaneously in a

single operation on all 2 TM processors. The compu-

tation of AE can be reduced to Boolean operations

by first associating the spin values a = {+1, -1} with

Boolean values = {1, 0) (which in effect makes a tran-

scription to a lattice gas model), and next noticing
that the value of the bracket part of AE corresponds

to the sum of the I bits of the Boolean expression. For

example:

Spin version:

{11 - 1111)

Value = 4.

Boolean version:

Sum of bits = 5

{110111}

The complete correspondence is as follows:

Spin Sum Bit Sum Representation
6

4

2

0

-2

-4

-6

6 110

5 101

4 100

$ 011

2 010

1 001

0 000

The bit representation for the sum of bits can it-

self be determined by defining summation of Boolean

expressions by Boolean operations. Assume that

BITS(I), I = 1,2,..,6 is an array of bit planes each

consisting of all 128x128 sites of a given color. The
bit representation of the sum consists of three more

bit planes B1, B2, and B3, initially all zero. Addition

is performed bit by bit with the proper rules for car-
ries. The correct representation for the final values is

obtained by executing the following loop.

10

DO 10 I=1,6

B1 = B1 .OR• (BITS(I)
.AND. B3 .AND. B2)

B2 = (.NOT. (BITS(I)

.AND. B3) .XOR. (.NOT. B2))

B3 = (.NOT. BITS (I))

•XOR. (.NOT. B3)

CONTINUE

The sign of the sum of neighboring spins is deter-

mined by the value of the high order bit B1. This

must be combined with the value of-2(a(k2}-a(kl )}
to determine when a random number needs to be com-

pared with exp(-JAE/kT}. Of course, the exponen-

tial also takes only finitely many values, so that it is

easy to parallelize the comparison step. The genera-

tion of random numbers can be done simultaneously
if a method which allows more than 2 TM seeds is used.

We have adapted a program due to Marsaglia and

Kahaner (Ref. 3}, but other methods are possible.
In any case, 2 TM pairs of sites are handled in a sin-

gle step. The total number different types of nearest

neighbor pairs ( < 1,2 >,< 6,7 >,< 9,5 >, etc.} is
32, and one should not cycle through these types in a

fixed pattern because this marching introduces false

dynamics into the simulation.

3 Vector Machines

Essentially the same algorithm can be used on a vec-

tor machine such as the CYBER 205. The repre-

sentations for AE can be computed very efficiently

using bit vector operations. However, vector instruc-

tions are not really the same as parallel instructions,

and so the 2 TM random numbers which are required

for each step take a lot of time to generate on a vec-

tor machine• The way to alleviate this is to reduce

even the comparison with random numbers to vector

operations on bit arrays. Assume, for convenience,

that the value of -2(a(k2) - a(kl)) is -4, and let

a = exp(-8J/kT). As in (Ref. 1), we create bit

arrays D1 DO of length 214 where DID0 = 11 with
probability as; D1D0 = 10 with probability a 2 - a s,

D1D0 = 01 with probability a - a s and D1D0 = 00

with probability 1 - a. This is easily done by generat-
ing 214 random numbers and noting where they fall in

the intervals I3 = [0, as), I2 = [a s, a2), I1 = [a s, a)

and I0 = [a, 1]. The test can now be performed by

computing the bits of (B1 B2 B3 + D1 DO) @ 001.
Here the operation _ means addition modified so that

the high-order bit is not "turned off" by a carry op-

eration (e.g. 111 $ 001 = 100). After this operation
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has been performed, exchanges can be made at all

sites with high-order bit equal to 1.

A little reflection reveals that the above method

performs exchanges with nearly the correct frequency,

because the bit vectors D1D0 approximate the cor-

rect probability distribution. After D1D0 have been

used for a step, the vectors must be permuted in some

random fashion, and to insure that the false period-

icities are not introduced, the DID0 vector should

occasionally be re-loaded by generating 2 TM new ran-

dom numbers. This, of course, is much more efficient

than generating a full set of random numbers for each

step.

4. Metropolis, N., Rosenbluth, A. W., Rosenbluth,

M. N., Teller, A. H. and Teller, E. 1954. J. Chem.

Phys. 21: 1087.

5. Williams, G. O. and Kalos, M. H. 1984. A

New Multispin Coding Algorithm for Monte

Carlo Simulation of the Ising Model J. Statistical

Physics 37: 283-299.

6. Mazenko, G. F., Valls, O. T. and Zhang, F. C.

1985. Phys. Rev. B31: 4453.

4 Preliminary Results

The first program to implement the algorithm on

the MPP was written in Parallel Pascal by Julie

O'Connell. However, signigicant portions of it were

later recoded in PEARL by Jim Abeles. The result is

a code which performs better than 200 million tests

of spin sites per second. Since our goal is to study

the long time growth of domains, very long simulation

times and averages over many different configurations

are required. The present code makes this a practical

possibility.

As has been mentioned, in the case of spin ex-

changes great care must be taken to avoid introducing

any false periodicities into the results. This need for

care is especially acute in our study because there is

considerable controversy about the long time behav-

ior of such models (Ref. 6}. Preliminary runs on the

MPP indicate that our algorithm is correct. We are

now conducting more extensive tests of the reliability

of our technique for using the random number gener-
ator.
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ABSTRACT

Research in cognitive science suggests that much of

cognition involves the rapid manipulation of complex
data structures. However, it is very unclear how this

could be realized in neural networks or connectionist

systems. A core question is: how could the inter-

connectivity of items in an abstract-level data struc-

ture be neurally encoded? My answer appeals mainly

to positional relationships between activity patterns
within neural arrays, rather than directly to neural

connections in the traditional way. The new method

was initially devised to account for abstract-symbolic

data structures, but it also supports cognitively use-

ful "spatial analogue", image-like representations. As
the neural model is based on massive, uniform, par-

allel computations over 2D arrays, the MPP is a con-

venient tool for simulation work, although there are

complications in using the machine to the fullest ad-
vantage. An MPP Pascal simulation program for a

small pilot version of the model is running.

Keywords: neural networks, connectionism, represen-

tation theory, data structures, mental models, im-

agery, spatial analogues.

I therefore adopt the working hypothesis that

much of human cognition requires rapid computa-

tional processes involving complex, temporary struc-

tures that hold information. These structures do not,

however, have to be very similar to the particular data

structures proposed in current AI and cognitive sci-

ence.

Now, in recent years there has been great inter-

est in the question of how "brain hardware" operates

so as to support cognitive functions. The usual as-

sumption is that the proper hardware level at which

to study cognitive functions is that of the dynamics of
neural networks, in which individual neurons perform

only quite low-level functions and communicate with

each other by sending simple signals along fibres. I

take this assumption as a second working hypothe-

sis, even though I am intrigued by suggestions that

other effects may be important; that, for instance, in-

dividual neurons may be capable of performing major

pieces of computation in their own right.

The two working hypotheses lead to the central

question addressed by the project:

INTRODUCTION

Artificial Intelligence and Cognitive Psychology have
provided the most advanced and detailed ideas about

the nature of the information processing needed

in cognition. Information processing as studied in

those fields typically involves the rapid manipula-

tion of complex, very-short-term symbolic data struc-

tures. The data structures may be representations of

the world, semantic structures derived from natural-

language utterances, descriptions of plans, goals, and

their relationships, and so on. Such structures must

be created, updated, analyzed, compared, modified,

committed to memory, and retrieved from memory
in rapid and complex ways. AI has been much con-
cerned with the abstract nature of the data structures

and manipulations, and with their implementation on

conventional computers.

CENTRAL QUESTION

How can rapidprocessingofcomplex, temporary

informationstructures,of some sortor other,be

accomplished by "standard" neuralnetcircuitry?

The emphasis on short-term structures and processing

is to be noted. The project is not at present concerned

with matters of long-term memory or learning. A late

stage of the project will look at such matters.

Limitations of Prevailing Ideas

Most of the research on the cognitive capabilities of

neural networks has centered on visual pattern recog-

nition, lexical processes in language understanding,

the "associative" retrieval of information from long-

term memory, and restricted forms of learning. But

for us to progress beyond these particular specialized
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functions, there must be a more" thorough and gen-

eral examination of how neural networks can repre-
sent and manipulate information. As is widely ad-

mitted, it is very unclear how we could answer the

Central Question by applying the main current ideas
about neural networks.

Most work on neural nets in AI and cognitive sci-

ence is within the so-called "connectionist" paradigm

[Refs. 4, 6, 8, II, 14]. Some connectionists have re-
cently begun to look at aspects of the central question

[e.g. Ref. 13]. However, the work is in its infancy and
has barely begun to address the real issues. There is

reason to believe [Ref. I] that it will be difficult to
deal with these issues without adding a great deal of

extra complication to existing connectionist models.

My own neural net model is a more thorough-

going attempt to confront the issues than has previ-
ously been made. In this confrontation, I have found
it beneficial to introduce some novel ideas about neu-

ral representation. The theory is thus highly atypical
as a connectionist theory if one defines connection-

ism by appeal to existing research, although it is still

connectionist in that it relies on networks of process-
ing units that are llke simplified neurons and send

only simple messages to each other. The model is

conjectural, though respectably in tune with neuro-

physiological evidence [Ref. 2]. An important feature

is that it serves as a brake on uncritical acceptance of

the (similarly conjectural) existing views of neural-net
functioning.

The Central Representational Tenets

Here I specify the basic, general representational prin-

ciples underlying the project. They could conceivably'
by instantiated in detail in numerous different ways.

One specific instantiation that I am studying and sim-

ulating will be outlined below. However, the general
principles would still be of interest even if this instan-
tiation were abandoned.

PRINCIPLE I

The neural realization (implementation) of a

short term data structure is composed of local-
ized patterns of neural activity. These localized

patterns are posilioned occurrences, in some neu-

ral medium, of patterns of neural activity that

are location-unspecific in that they can be in-
stantiated at any position within that medium.

Analogy: A piece of natural language text is a data

structure (in a paper/ink medium) whose parts are lo-
calized occurrences of location-unspecific visual pat-

terns (words).

pRINCIPLE

One important way in which those neural activity-

pattern occurrences are "glued" together so as to

form structures is to be in appropriate relative
positions in the neural medium.

Analogy: In a piece of text the word occurrences are

structured by being put into appropriate relative po-
sitions.

PRINCIPLE 3

Activity-pattern occurrences that act as parts of
an implemented data structure can also be asso-

ciated with each other by being similar in some

particular sense.

Analogy: a textual label used in a diagram and in a

legen_d attached to the diagram serves to associate a

part of the legend with a part of the diagram.

There is a fourth principle that I state later.

Neural Arrays

Principles 1 and 2 mentioned neural-net media in

which patterns of neural activity can be given in-
stantiations in particular positions. Thus, I am as-

suming that the media are such that one can make

sense of the notions of "instantiation', "position" and
"relative position" within a medium. To this end I

have adopted the following simple assumption in my

model: each medium is a £D square array of small

neural circuits. All the arrays are of the same size,

and all the small neural circuits (the array elements)
are similar to each other. Each array element sup-

ports at any given time a particular pattern of neural

activity, and, since the array elements are isomorphic
circuits, the supported patterns can be viewed as po-

sitioned instantiations of location-unspecific patterns.

A short-term data structure, then, consists at the

hardware level of configurations of pattern instantia-

tions in one or more of the neural arrays. To continue
the text or diagram analogies mentioned above, an ar-

ray can be likened to a piece of paper on which words

can be put in particular places.

In theory the arrayness of my neural media could

be purely abstract, with no implication that they are

laid out in space as geometric arrays. Nevertheless, I
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do in fact assume that they are so laid out, at least

approximately. This is convenient because the pro-
cessing applied to the media requires adjacent array

elements to communicate. Although there is some de-

gree of broadcasting within arrays, it is overshadowed
by the neighbor-neighbor interactions.

The 2D geometric arrayness of the media fits in
well with current ideas about the functional structure

of cortex. I say more on this later.

Spatial-Analogue Representation

Now that we have proposed an array-based compu-
tational architecture, it is a short step to the follow-

ing proposal: that bodies of information that can ab-

stractly be cast as arrays could in some cases be ira-'

plemented in the architecture by adopting a natural

mapping from the abstract arrays down to our neu-

ral arrays. (Cf. the standard implementation of a

1D abstract array by sequential allocation in a con-

ventional computer memory, viewed as a ID array of

cells.) The point of this sort of "natural" implemen-

tation of abstract arrays is that it can render certain

sorts of operation on the abstract information more

efficient or more convenient than they would other-
wise be.

There is one specific sub-proposal that much of

my project is concerned with: that £D "spatial" ar-

rays could be ........ ly mapped onto the neural arrays.

By a " 2D spatial" array I mean an abstract array in
which element (ij) is meant to correspond to position

(or subregion} (i j) in some 2D projection of space.

Thus, in a neural array that is being used to support

a spatial array, the element (ij) would correspond to

and hold information about position (id) of the 2D
projection of space.

Of course, having arrived at this point we ob-

serve that a neural array could be used to naturally
map an abstract 2D space as well as a geometric one.

Altogether, we are led to the following:.

pRINCIPLE 4

Relative position of activity-pattern occurrences

in a neural array may (from time to time} serve

to encode relative position in (geometric or ab-

stract) spaces.

This principle as stated is very general. One impor-

tant possibility that it allows is for spatial-analogue

representation to be mixed with other sorts of rep-

resentation in the very same neural array. Such hy-

brid types of representation are a major focus of my

project.

I view the range of possibilities allowed by Prin-
ciple 4 as constituting a neurally-explicated capability
for a form of imagery. I use the term "imagery" to link

the work to studies of imagery by psychologists and

philosophers [Refs. 3, 7, 10]. Imagery is held to con-
fer processing advantages in various sorts of mundane

cognition, including some types of problem solving,
although there has been much controversy over the

various claims made, and indeed over what imagery

is in the first place. On the other hand, although I
find it convenient to use the term "imagery" in talk-

ing about my model, I emphasize that I do not imply

that human beings have any conscious access to the

"images" I postulate. The images are simply a cer-
tain class of data structures, processsed in a certain

way.

THE SPECIFIC MODEL

I now sketch a particular, detailed model that instan-

tiates the data structuring principles presented in the

previous section. A longer discussion is provided else-

where [Ref. 2].

The role that this particular instantiation of the

principles plays in the research should be carefully

understood. I view it as just one of the many con-

ceivable detailed models that conform to the general
principles. It is this class of models that is my real

interest. Thus, it is possible that the present detailed
model may later be overthrown in favour of another.

In any case, the present model contains several delib-

erate over-simplifications.

The instantiation takes the form of an information-

processing model specified at a level slightly above

that of detailed circuitry. That is, the model is com-
posed of building blocks that can clearly be given a

straightforward implementation in terms of idealized

neurons that typically act like logic gates.

The model is based on a set of neural arrays of the

sort described above. I henceforth call them configu-

ration matrices (CMs). A short-term data structure

is set up by putting appropriate CM elements into

appropriate activity states {and letting the others be

in a "null" or "resting" state}. The elements used in
a data structure need not all be in the same CM.

Structure per se consists partly in the relative
positioning within individual CMs of the CM-element

states. {See Principle 2.} This form of structure is

backed up by a version of Principle 3: if two CM
elements are in states that are similar in a certain

way then they are taken to be identified with each
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other;, that is, certain processing mechanisms treat
them as if they were the same element.

A CM is laid out on the cortical surface as a

geometrical 2D array, at least approximately. Each

of the CM elements composing a CM is connected to

its eight neighbors, to enable certain basic processing

operations. The fact that the theory proposes several

CMs rather than iust one larger one reflects a concern

with physiological plausibility, but there is no space

here to go into this matter.

The total set of configuration matrices is divided

into a small set of "principal CMs" and a possibly

large set of %'torage CMs _. The activity configura-

tions (i.e. implemented data structures} in the prin-
cipal CMs can be acted on by condition-action rules.
These rules are implemented in neural circuitry that

is for the most part outside the CMs themselves but is

also dependent on connections between CM elements.

Rules do such things as responding to, analyzing and

modifying the data structures in principal CMs, copy-

ing them into and out of storage CMs, organizing
transfers of information between CMs and long-term

memory, and sending signals to mechanisms external
to the CM model itself.

I emphasize that the data structures in CM8 are

short-term. They are constantly being modified, in

the service of cognitive tasks such as language pro-

cessing, commonsense problem-solving, planning and
so on. The nature of long-term memory in the theory

will only be investigated at a late stage in the project.

(I certainly do not assume that a long-term encoding

of a CM activity-configuration is itself a pattern of

neural activity.}

The state of a CM element at any moment t is an

ordered pair (Bt, Ht). The component Bt is one out
of a finite set of values called "basic symbols". This

set of possibilities is the same for every CM element.

Any number of CM elements can simultaneously have

the same Bt value.

Most basic symbols will, at least in the initial

stages of the project, be neural activity patterns that

are internal "names" for entities such as particular

people, classes of objects (e.g. the class of all tables},
classes of situations or events, etc. When a CM ele-

ment holds such a basic symbol then we regard the

element as (currently} representing the entity named

by the symbol.

The Ht component of a CM element's state is an

ordered tuple of ON/OFF flag values. For intuitive
convenience, each tuple position is identified by the
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name of a color. When, say, the "red" position con-

tains the value ON we say that the CM element is

{currently} "highlighted in red", or just "red".

Data structures are created by placing partic-

ular basic symbols in various CM elements and/or

by putting CM elements into particular highlighting
states. The absolute positions of basic symbols and

highlighting states in a CM are irrelevant in the case

of data structures with no spatial-analogue aspect --

only the relative postioning is significant. For the

purposes of illustration, suppose there is a basic sym-
bol that is the internal neural "name" for a partic-

ulax person Mary. Let us refer to this basic symbol
as MARY. Similarly, suppose there is a basic symbol

JOHN for a particular person John, and a basic sym-
bol LOVE that is the internal name for the class of

possible loving situations. Then the statement that

John loves Mary can be encoded by means of the CM

sub-configuration depicted in Figure 1.

LOVE

® o

1 L_

®

Figure 1: John loves Mary.

The figure is to be understood as follows. It illustrates

an 8 by 8 region within a CM. Squares illustrate CM

cells. {The illustration is schematic: CM cells axe
not meant to be geometrically square regions of cor-

tex.) Capitalized words inside the squares illustrate
basic symbols, the black disc illustrates highlighting

in black, the empty circle illustrates highlighting in



white, and 'r' and 'g' in circles illustrate red and green

highlighting respectively. Squares with no basic sym-
bol shown illustrate cells containing a special NULL

basic symbol that does not represent anything. Ba-

sic symbols JOHN and MARY represent the people

John and Mary, and basic symbol LOVE represents

the "love" situation-class. The highlighting serves to

distinguish the roles of adjacent CM cells with respect

to each other. White and black highlighting are con-
fined to the special use illustrated here: a white CM

cell represents a member of the class represented by
the adjacent black CM cell. Therefore the white cell

in the Figure represents an individual love situation,
and is the "head" cell of the statement. In a love

statement the agent and object cells (those contain-
ing JOHN and MARY here) must be highlighted in

red and green respectively to indicate their particular
roles.

The most important thing to notice about the ex-

ample is the use of adjacency between CM elements

as the "glue" sticking components of a data structure

together. The particular relative positioning of CM

states is unimportant except in so far as the appropri-

ate adjacency relationships are achieved. Note that

adjacency includes diagonal adjacency.

More complex data structures are built up in

much the same way, as shown elsewhere [Ref. 2].
However, the representation method as so far pre-
sented suffers from an overcrowding problem. Most

obviously, the method as it stands cannot handle an

n-ary predication for n > 7, rather than a binary pred-

ication (using "loves", say}. The overcrowding prob-

lem is avoided by the use of "unassigned symbols",

a special type of basic symbol. An unassigned sym-
bol does not permanently name anything. Rather, a

CM element containing such a symbol can temporar-
ily name something by virtue of that element's current

role in a data structure. The crucial point is that if
any two CM elements contain the same symbol, then

they are in a sense identified with each other. Roughly

this means that the two elements both currently rep-

resent the same thing. Therefore, data structures can
be split up into sub-configurations.

The technique is illustrated in Figure 2, showing

how the information that John loves Mary or Mary

loves John could be encoded. In this figure the letters

'k' and 'r indicate unassigned symbols, temporarily
naming the hypothetical love situations. The OR sub-

configuration uses those unassigned symbols, thereby

referring to the same love situations. The 'p' in circles
indicates purple highlighting.

The sharing of symbols by CM elements consti-
tutes the model's instantiation of Principle 3 above.

Two elements are in a "similar" state just when they

contain the same basic symbol, and the "association"

involving them consists in their being identified with

each other. It is only fair to mention that similarity

association, although perhaps conceptually elegant as

a representational technique, introduces some extra

complexity and inemciency into the processing mech-
anisms.

Logical quantification can be handled straightfor-
wardly, by means of activity configurations that are

analogous to quantified formulae in first-order logic.
However, I am not happy about proposing brain data
structures that are similar in this way to logic for-

mulae. I am interested in the possibility of including

more ad hoc or naive quantificatioaal machinery. I
make one suggestion below.
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Figure 2: Structure splitting.

An Important Caveat

•My interest is more on how the representational Prin-

ciples enunciated above can be used to effect data

structuring than in what the content of the data struc_

tures is. Thus, data structures and rules of the type

illustrated in this section are merely being used for
intuitive convenience° I am not committed to the
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data structures and rules being at just this conceptua_

level in the brain. For instance, it may be that state-
ments would be broken down into lower-level concep-

tual primitives. Nor am I committed to the (abstract-

symbolic) data structures being closely analogous to
logical formulae, as they are in the present model.

Some Parameters

The project takes CMs to be of size 32 by 32. This size

fits well with my conjecture that each CM element is

implemented in the brain as a "minicolumn" of cor-

tex [Ref. 9]. Minicolumns are claimed by some neu-

rophysiologists to be basic functional units of cortex.
There are about 1000 in each of the larger columns of

cortex (about lmm wide} that also seem to be impor-,
tant functional components. Thus, a CM of size 32 by

32 fits nicely into a large column. A minicolumn con-

tains about a hundred neurons, which is enough for

my" purposes, especially since a single neuron is itself
capable of complex switching behavior. (Real neurons

are much more complex than single logic gates.}

If there are basic symbols of the sort used in ex-
amples above, then there must be several thousand

of them {and an accordingly large number of loca-

tion matrices -- see below -- for each principal CM).
The simulations in the project will use an artificially

restricted set of basic symbols, numbering no more
than a hundred or two.

I conjecture that there are only a handful of prin-
cipal CMs in the brain, and the simulations will cer-

tainly not use more than a dozen or so. No a priori
limit to the number of storage CMs will be imposed.

Spatial and Diagramnmtic Imagery

Line-of-Sight Tasks -- In accordance with the

spatial-analogue Principle (number 4), I allow rela-

tive position of CM elements to be used temporarily
to represent relative positions in geometric spaces or

in abstract spaces. In particular, if both "spatial"
axe3 in a CM are taken as analogues of geometric

axes, then a CM configuration acts as a sort of "spa-

tial image".

Figure 3 depicts an example of a spatial image.

Such a data structure might be used in dealing with

a task mentioned by Sloman [Ref. 12] -- determin-

ing whether some adversary A can see desired goal

object G, there being an obstacle that might block

A's line of vision. In the Figure, the 'G' and 'A' in-

dicate CM cells representing the goal object and the

adversary. The cells could contain basic symbols rep-

resenting those entities, or could be suitably qualified
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by abstract-symbolic structures in which the cells are

embedded {though none are shown in the Figure}.
The large blob illustrates an irregularly-shaped group

of orange-highlighted CM cells depicting the rough

shape of the obstacle. The crosses indicate a group

of gold-highlighted cells that are approximately in a

straight line. This group depicts the line of sight. No-

tice the use of highlighting to differentiate the iden-
tities of various entities. All the cells illustrated are

highlighted in blue as well. Certain processing rules

take the relative positions of blue cells (and only blue

cells) to indicate the relative spatial positions of the

represented objects. The obstructing of the line of

sight can be detected by a rule that responds to CM

elements that are highlighted in both gold and orange.

Figure 3: Line of sight.

The spatial problem-solving achievable with such

images is obviously of an approximate nature, but is

nevertheless heuristically useful. Elsewhere [Ref. 2]
I give the details of the processing of such an image.

Notice that the gold line represents a non-physical

object, but itself has the same spatial quality as the

blob representing the physical obstacle. This phe-

nomenon is part of the "diagrammatic" quality of the

system's imagery capability. Observe also the very

important point that the image could include abstract

statements about the entities involved. E.g. there



brain model than the standard logical forms of quan-
tification are.

RULES

We now turn to the way the rule mechanisms work.
Consider an inference rule that could be stated in

English as:

if a man loves a woman then the man is hungry

and assume that this rule is realized as a body R of

neural circuitry (mostly external to the CMs). Sup-
pose there is a principal CM holding a data structure

stating that man M loves a woman W. (Recall that
a principal CM is a CM whose contained data struc-'

tures can be manipulated by the rule mechanisms.)
To put it briefly, R detects the data structure by

means of suitable input taken direct from the CM
and indirectly from it via various "location matri-

ces _ (LMs). The detection is achieved by circuitry
that operates in parallel uniformly over the whole of

each LM or CM concerned. R then sends signals to
LMs and the CM that cause a piece of data struc-

ture stating the man is hungry to be inserted into the

CM. Once again, the signalling operates in parallel

over whole arrays. For instance, when signalling to

the CM, R sends the same signal simultaneously to

all CM elements. These then respond differently ac-
cording largely to their state of highlighting and the

highlighting states of their immediate neighbors.

In the following I discuss only the detection phase

of rule firing. The crucial feature of this phase is the
use of LMs. Consider a single principal CM. For each

ordinary basic symbol B there is a location matrix
LMv associated with the CM. This is a 2D neural ar-

ray isomorphic to the CM, although the LM elements

themselves are not isomorphic to CM elements. For
now we can assume that the state of an LM element is

just a single flag value. We say that the LM element

is on when the value of this flag is ON. The purpose of
LMv is to indicate the positions of those CM elements

that contain the symbol B. Specifically, a element in

LMB is ON when and only when the corresponding
CM element contains B.

If B is a symbol naming a class of entities, then

there is a member location matrix MLMB as well as

the matrix LMv. The task of MLMv is to indicate

the positions of members of the class. For instance,
the basic symbol LOVE used earlier names the class of

conceivable loving situations. Elements that are on in

LM_ovE indicate the positions in the CM of occur-

rences of the LOVE symbol itself. On the other hand,

elements that are on in MLMLovE indicate the posi-

tions of elements in the CM which explicitly represent
individual loving situations currently. The most im-

portant case of such a element _s a "love-proposition

head element" -- that is, a white-highlighted element
which is next to a black-highlighted element contain-

ing LOVE (cf. previous Figures). Another case is

when a CM element contains an unassigned symbol

that is also sitting in a love-proposition head element,

for then the two elements represent the same loving
situation.

Similarly, the task of MLMMsN is to indicate

the positions of CM elements that represent indi-

vidual men. This works analogously to the LOVE
case, since a white element next to a black element

containing MEN represents some man. Of course, a

CM element might contain the basic symbol JOHN,
where John is a man. Thus, whenever an element in

LMIOHN is turned ON the corresponding element in

MLMMsN is also turned on (if it is not already on).
Similarly, whenever a element in MLMMEN is turned

on the corresponding element in MLMpERsoNs is
also turned on.

The example rule mentioned above requires a fur-

ther location matrix, to indicate the positions of CM
elements representing man-loves-woman situations.

This matrix is described elsewhere [Ref. 2]. Notice
that it is needed only because some rule needs to de-
tect man-loves-woman situations. No location matrix

is necessary unless it forms part of the machinery for
some rule.

Similarity-association or symbol-sharing is given

computational flesh by LMs. The basic idea is that

whenever element (x,y) of a given LM is ON and
the corresponding element of the CM contains a non-

null symbol B, we want the system to turn ON every

other element (x',y') (in that LM) such that element

(x',y') in the CM also contains B. This effect is just

what is required for symbol-sharing to be taken as
CM-element identification. In fact, to facilitate the

process I take each LM element to contain the basic

symbol that is in the corresponding CM element. The

required spread of ONness in an LM is achieved by

each ON element in the LM broadcasting its symbol

to all other elements in the LM, and every element
then turning ON if its own symbol is the same as the
one broadcast.

Without special assumptions this broadcasting

must be done separately for every different symbol

represented in the LM, but if in fact the symbols are

nearly-orthogonal vectors of neural activity then it
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might be a statement to the effect that the adver-

sary is afraid of "us" (the agent doing the problem
solving). This ability to mix spatial and non-spatial

data structures is another aspect of the diagrammatic

quality of the system.

The rules that operate on the spatial image in

the line-of-sight task rely predominantly on primi-

tive signalling mechanisms that are much the same
as those required in any case by non-spatial-analogue,

abstract-symbolic processing. This point is an impor-

tant aspect of the fact that the theory puts spatial im-

agery and abstract-symbolic processing into a unified
framework.

3ohnson-Laird's Mental Models -- Johnson-Laird

has devoted much attention to human reasoning

about physical arrangements of objects [Ref. 5]. In a

simple case, a subject is told that the fork is to the

left of the spoon and that the knife is to the left of
the fork, and the subject must infer or verify that the

knife is to the left of the spoon. Johnson-Laird main-

tains that the subject constructs not only some inter-
nal propositional representations of the given pieces

of information (these representations being of a form

close to the linguistic statements themselves} but also
a "spat£almental model" of the situation. This

model consists of some sort of internal map-like rep-

resentation of space: tokens standing for the various

objects in the task are placed in particular positions

in the map, the positions being consistent with what
the propositional representations say. The desired re-

lationships can then be read off the map directly.

The present projectwill provide a rather di-

rectneural implementation of Johnson-Lalrd'smod-

els.That is,ina CM being used as a space map, ele-

ments can be made torepresentparticularobjectsby

means ofthe data structuringtechniquesalludedtoin

the previoussection.These elements would be in rel-

ativepositionsinthe CM that correspond to the rel-

ativepositions of the object relationships as specified

in the task statement. See Figure 4. The three white
cells represent a knife, a fork and a spoon. These cells

are also blue, to indicate that their relative positions

have spatial significance. For illustrative convenience,

leftness/rightness in the CM illustration in the Figure
corresponds to leftness/rightness in physical space.

In fact, an important feature of Johnson-Laird's

total theory is that mental models are constructed

from propositional (abstract-symbolic) representa-

tions that state the object relationships in the case at

hand. His propositional representations would have
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an analogue in my system, in the form of abstract-

symbolic data structures in various CMs. "A is to the
left of B" can of course be represented in the system

in a way similar to the way "John loves Mary" is rep-
resented. These data structures will be used as a basis

for constructing the diagrammatic spatial images that
display the relative positions. The construction will

itself be done by rules in the rules component of the
model.

@ © @
0 0 0

@ • •

Figure 4: An implemented mental model.

For various reasons, Johnson-Laird suggests that

some spat£al mental models may contain simple

symbolic devices of a propositional nature as well as
the devices already illustrated. The CM theory is well

set up to handle this sort of mixture, since it is already

geared to hybrid, diagrammatic imagery as well as

simple spatial imagery and purely propositional data
structures.

The project will give precise computational sub-

stance to another major aspect of Johnson-Laird's

ideas. This is the issue of syllogistic reasoning.

Johnson-Laird proposes the use of another class of

mental models to cope with such reasoning. This

class is easily encompassed in my model. The syllogis-
tic mental models involve certain restricted forms of

quantification that are arguably more plausible for a



turns out that the treatment of all the different sym°
bois can proceed in parallel. I am investigating means

for achieving this near-orthogonality.

Interpreted Rules

There is a major disadvantage to the hardware im-
plementation of rules of the sort assumed above. The
rules themselves are not data structures that can be

inspected and manipulated {in the service, say, of
rule learning and modification). A major task of the

project will be to investigate the possibility of rules in
the form of data structures. That is, to continue the

example used earlier, the rule "if a man loves a woman
then the man is hungry" would be a data structure
of some form in a CM. The hardware rule mechanism,

would then consist partially or wholly of rules that

act together as an interpreter of the data structure
rules.

The ideas on interpreted rules are less fully devel-
oped than are other aspects of the model. A detailed

syntax of data structure rules remains to be fully de-

fined, and the nature of the pattern matching pro-

cess required for rule enabling is not yet completely

worked out. I anticipate that this process will oper-

ate largely by the flow of simple signals among CM
elements.

MPP SIMULATION

An MPP Pascal simulation program for a small pi-
lot version of the model is running. In this version

there is just one CM, 20 basic symbols (the location-
unspecific neural activity patterns that can be instan-

tiated in CM elements}, 5 highlighting colours, 2 very

simple rules, and 22 LMs (the location matrices sub-

serving the rules}. Later simulations of the model will
involve a hundred or two basic symbols, a dozen or so

highlighting colours, a few principal CMs, dozens of

storage CMs, dozens of rules per principal CM, and

several hundred LMs per principal CM.

The current level of simulation is above that of

detailed neural circuitry, so that for instance a basic

symbol is simply simulated at present by a integer

value. The highlighting flags at each CM element are

simulated by boolean values. The ON/OFF state of
an LM element is also simulated by a boolean value.

Accordingly, the CM is simulated by {1} a paral-

lel array of integers (in a subrange} and (2) for each

highlighting colour, a parallel array of booleans. Each

LM is simulated by a parallel array of booleans. All
these arrays are simultaneously present in the ARU.

Since in the model each CM and LM is of size only 32
by 32, only parallel subscripts in the range 0..31 have

significance currently.

After the initial state of the CM has been set up

from input data, the simulation proceeds cyclically.
Each cycle consists of (a) redefining the state of every

LM, (b) firing one rule {if any can be fired at all),
thus usually altering the state of the CM. The cycling
stops when either no rule can fire or an input-specified

number of cycles has been performed.

The neural model itself relies mostly on uniform,

local, parallel operations over any given matrix (i.e.

a given operation involves all elements of a matrix
simultaneously, the processing at the elements vary-

ing only according to their own current states and

their neighbors' current states). Therefore, most of

the programming of the LM-state updates and rule-
firing is straightforward, and makes good use of the

ARU's SIMD nature and of MPP Pascal's parallel-

array features. A certain amount of array shifting is

needed in those cases when the processing at a matrix

element brings in the neighboring elements.

In later model versions, there will be several

CMs, and more than one will be "principal" (i.e. as-

sociated with rule machinery). Since there will be sig-
nificantly many periods during the model's processing

when various different principal CMs (and attendant
LMs) are being similarly processed, and since it is un-

likely that any model version will contain more than
16 principal CMs, it will be convenient to simulate the

principal CMs by using different 32 by 32 portions of

the ARU {with the LMs attached to a given CM us-

ing the same ARU portion as that CM). Thus various
principal CMs will be able to be operated on simul-

taneously. However, the arrangement will complicate

the programming of the frequently needed copying of
the contents of one principal CM into another princi-

pal CM.

Storage CMs, on the other hand, can be conve-
niently stacked vertically beneath principal CMs, as

there would be little benefit in arranging them hor-

izontally across the CM, and they do not have any
associated LMs.

LM Paging

In later versions of the model, each LM element will

have a few flags in addition to the single on/off state

mentioned earlier. These flags and the state will be

simulated by booleans. Now, in the model, each LM
element will also contain a copy of the basic sym-

bol in the corresponding element of the CM to which
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that LM is associated. However, it turns out that

my current hypotheses about the use of these symbol

copies are such that there will be no need to carry

the duplication over into the simulation itself. Thus,

it will be adequate to go on implementing each LM as

a small set of boolean parallel arrays. Nevertheless,

since large versions of the model will contain several

hundred LMs for each principal CM, the memory ca-

pacity of the PEa in the ARU will be too small to
hold all the LMs. A scheme will be needed for paging

LMs to and from the staging memory°

A Snag

To oversimplify a little, l would have liked to use the

following piece of program to do some basic LM up-

dating. (Type symbols is a subrange of I_ids, which

is itself a subrange of integer.}

(. elq_syabols: parallel array[0..127,0..127]

of symbols ;

L_4: parallel array[Llqids,0.. 127,0.. 127]
of boolean ;

*)

where C]q_symbols o null_symbol

do I_4[CN_syabols] := true

That is, the desired action was:

for each i,j where e/,l_syabols [i, J ] o null_nyabol,

set LM[G_4_symbols[i,J], i,J] to true.

Unfortunately, albeit understandably, neither the

hardware nor MPP Pascal supports this "indirect ad-

dressing" at PEa. Therefore, I have had to resort to a

loop that cycles through the (non-null} symbols, using

a control variable s, doing

L_4[s] := (Cl__syabols = s)

at each stage. This loss of parallelism will not have

a drastic effect on my own simulation work, but the

phenomenon is of some general interest. Goodyear

Aerospace's Dr. Ken Batcher, designer of the MPP,

suggested indirect addressing at PEs as an important

addition in future versions of the machine, in his in-

vited speech during the Symposium. It is also note-

worthy that he appealed specifically to artificial intel-

ligence as an application domain that might benefit

from indirect addressing.
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ABSTRACT

The Massively Parallel Processor

(MPP) is an ideal machine for computer

experiments with simulated neural nets

as well as more general cellular

automata. The purpose of this paper

is to describe our experiments using

the MPP with a formal model neural

network. Our results on problem

mapping and computational efficiency

apply equally well to the neural nets

of Hopfield, Hinton et al., and Geman
and Geman.

Keywords: Neural Network, Annealing

System, Stochastic Cellular Automaton

INTRODUCTION

This paper is a preliminary

report on a major component of the

research proposal of M. Conrad and the

authors, entitled "Applications of

stochastic and reaction-diffusion

cellular automata." These types of

automata are a natural formal setting

for theoretical investigations in

brain and ecosystem modelling. Most

of the proposal was concerned with

brain modelling. A significant part

of the proposed activity in that area

has been completed, and will be
discussed here.

Hastings and Pekelney (Ref. 4),

observed that many of the properties
of the brain seemed to be natural

consequences of the working hypothesis

that the brain was a large network of

McCulloch-Pitts neurons (threshold

devices) connected by synapses with

stochastic conduction thresholds. In

particular, such networks display both

gradualism (small changes in inputs

cause small changes in outputs (Ref.

1)) and modification-based learning

(structural changes as a result of

history, Conrad, Ref. 2).

Later, the authors developed a

model neural network, implemented the

network on a VAXII-780, and conducted

experiments in basic learning

principles. They also defined (Ref.

5) three postulates which

characterized evolutionary learning

(for example, by simulated or real

neural networks).

Evolutionary Learning

An evolutionary learning system

is a formal dynamical system in which

the states correspond to modes of

information processing, while the

suitability of each state is measured

by a potential function, the most

desirable states possessing least

potential. The dynamics of such a

system are determined by an annealing

process (Refs. 8-9), so that desirable

modes are attained by a gradual

lowering of the amount of thermal

noise.

(The prototype example of an

annealing process consists of a gas

molecule confined in a potential well,

in which the goal is the location of a

global potential minimum. If the

ambient temperature is lowered

sufficiently slowly, the molecule will

become trapped in the global minimum

with a probability arbitrarily close

to one. It is the random behavior of

the molecule, "thermal noise," which

accounts for its ability to escape

from local minima during the cooling

process. Simulated annealing then

entails simulation of these dynamics

in the solution of combinatocically

large-scale minimization problems such

as the "travelling salesperson"
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problem. The essential role played by
randomnoise in such techniques places
them outside the realm of algorithmic
strategies.)

Further, the potential energy
function depends on the environment,
so that it is the environment which
indirectly determines the equilibria
and evolution of the system. Werefer
to this indirect process of control as
soft programming. An evolutionary
learning system may then be thought of
as a dynamical system which behaves
according to three principles:

ergodicit¥ - the use of chaotic

behavior to search a state space,

annealing - the regulation of thermal

noise by means of (local) lowering of

ambient temperature, and

§oft programming - the indirect
control of the evolution of the system

by the environment.

More complex learning regimes

were shown to follow the same basic

principles (Waner and Hastings, Ref.

10). We also remark that gradualism

in annealing systems is a consequence

of the annealing dynamics: small

changes in the starting point or the

shape or potential surface usually

cause small changes in the dynamics.

Modification of the potential surface

through feedback in learning

corresponds to Conrad's modification

based learning. The annealing

dynamics are considered to be internal

and inaccessible in detail compared to

the feedback dynamics of any learming
scheme •

In late 1985 and early 1986 the

neural network programs were

transported to the MPP. The

relationship between the theoretical

dynamics and the neural net models

will be briefly discussed below.

7O

The rest of this paper is divided

into three main parts. The first of

these summarizes our neural network

models. The second part summarizes

our experiments to date on the MPP,

and should be understood in the

context of a preliminary report. The

last part describes conclusions for

the application of the MPP and similar

massively parallel architectures for

our model and similar models. Most of
our qualitative conclusions may be

readily applied to other neural

networks (Hopfield (Ref. 7), Hinton,

Sejnowski, and Ackley (Ref. 6), Geman

and Geman (Ref. 3)).

THE NEURAL NETWORK

In this section we describe the

data structures and algorithms used in

our neural network, and briefly

describe the dynamics.

Data Structures

The fundamental data structure is

a directed graph in which nodes

correspond to formal neurons, and

arrows to formal synapses. Early

experiments on a VAX used a

rectangular array of neurons, with

nearest neighbor and second-nearest

neighbor connections. This structure

suggested a natural problem mapping to

the MPP. The MPP model uses a 128 x

128 array of formal neurons, with

connections to all neighbors in a 5 x

5 array centered at each neuron. This
data structure also accords well with

a 2+ _ -dimensional structure for

random access in the brain (see Ref. 4

for discussion).

The formal neurons are

McCulloch-Pitts neurons. Each

contains one or more inputs, has a

fixed firing threshold, and fires

(sends an output) if and only if the

sum of inputs since the last firing is

greater than or equal to the firing

threshold. The sum of these inputs is

called the activity of the neuron; on

firing the activity is reset to 0.



The synapses are also threshold
devices. Their associated thresholds
are called conduction thresholds.
However, there are two important
differences between the use of
thresholds of synapses and those of
neurons. First, the conduction
threshold of a synapse determines the
probability of conduction along that
synapse according to the rule
prob(conductlon) = I - (conduction
threshold). Second, the conduction
thresholds are modified according to
two rules :

LEARNINGBY REPETITION. Thresholds of
synapses which conduct (and similar
synapses) are lowered. Conduction
thresholds of synapses which do not
conduct (and similar synapses) are
raised. In the presence of suitable
learning regimens, this yields
Conrad's modification based learning.
The threshold modification schememust
be constructed carefully to minimize
the chance of positive feedback in the
internal dynamics.

LONG-TERMFORGETTING.Most conduction
thresholds (all thresholds except
those very near 1 or very near 0)
slowly decay to a base value.
Thresholds sufficiently close to 0 or
1 do not change; this corresponds to
modification-based learning.

Annealing System

Recall that the temperature in an

annealing system corresponds to the

degree of randomness. In this sense,

the entropy (Shannon information)

associated with random behavior at all

of the synapses corresponds to the

temperature. When following a

learning regimen results in reducing

this entropy, this corresponds to a

reduction in temperature. The use of

random conduction along synapses

yields the underlying diffusion in an

annealing system; restricting the

dimension to 2 or using a wrap-around

topology would guarantee ergodiclty.

For all practical purposes the present

system appears ergodlc. Differences

in thresholds yield drift terms

corresponding to the gradient flow

part of annealing. These differences

and consequent drift become more

pronounced as learning via "annealing

through modes of information

processing" proceeds.

We remark that classical

annealing problems (Ref. 9) can be

readily programmed on the MPP with an
analogous problem mapping of one cell

per processor.

Soft Programming

Soft programming consists of

specifying the learning goals. Three

types of goals have been studied

theoretically. The simplest consists

of structured path learning o

learning paths from "s rces to

"targets." The MPP program below

illustrates this case. More complex

cases include associative learning and

more complex route-finding (only

theory so far).

Problem Mapping

We have allocated one processor

to each node. This offers the

advantages of simple data flow and

programming, at the expense of

frequently having idle processors in

simple experiments.
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The Program

NEURAL NET: BEGIN

I. INITIALIZE

Net: initialize thresholds

initialize activities

initialize source and

target, or learning problem

Supervisory: initialize random

number generator, clocks,

maximum time allowed, etc.

Learning regimen : specify.

2. MAIN LOOP: REPEAT until timeout

or learning occurs. Increment random

number generators as necessary

throughout loop.

AT each neuron: IF activity is

greater than or equal to

firing thresholds, THEN

FIRE and reset activity to O.

AT each synapse, IF neuron at

tail of synapse has fired, THEN

TEST for conduction:

synapse conducts if random

number is greater than

conduction threshold.

IF synapse conducts, THEN

increment activity of

neuron at head of synapse.

AT each synapse, modify

conduction thresholds incor-

porating learning by

repetition and short-term

forgetting.

Did net learn? If so, then

exit loop and print results.

Increment clock.

END MAIN LOOP

3. OUTPUT

END NEURAL NET

7_

One should note that the net is

intrinsically parallel and

stochastlc. The parallel feature of

the net allows a natural problem

mapping: one maps one formal neuron

to each processor. Other mappings are

possible; for example, one could map

each processor to one neuron in a

neighborhood of a given neuron, and

store the net in an appropriate data

structure for transversal. The

problem mapping we used was chosen for

its simplicity, and potential to

reduce the size of the program and

max imi ze computing speed. For

example, the MPP program is

approximately 20-30% shorter than the

VAX program, and both are programmed

in similar high-level languages.

The MPP prog ram al so ran

significantly faster than that of the

VAX. The present improvement factor

in simple experiments is about 100.

However, the MPP does not slow down as

the number of neurons firing is
increased. This combined with a

utilization factor in critical steps

of about 5% in simple experiments

suggests a relative speed increase in

complex tasks should approach 2000.

CONCLUSIONS

Massively parallel architectures

are especially appropriate and useful

for neural network and similar

simulations. In particular, the

geometry of the MPP closely parallels

the structure of our net model. This

places much of the data structure in

hardware, reducing computational

costs. In addition, much of the

computation is "strongly parallel" in
the sense that the next state

computations must take place

simultaneously at many locations.

Failing this, data structures and data

movement must be developed to simulate

this degree of parallelism.

Furthermore, most of the VAX

computation cost apparently lies in

data movement, since no elaborate



function evaluations are needed. This
contrasts sharply with both algorithms
such as Gaussian elimination in which
such t ight parallelism is not
necessary, and algorithms such as many
finite element algorithms in which
such parallelism is necessary (at
least at a simulation level), but in
which significant function evaluation
costs far exceed data movementcosts.

Much of our computing time is
spent in random numbergeneration. We
are exploring the possibility of
realizing random number generators or
more general stochastic gates in VLSI
hardware. Should this exploration
prove successful, it would be possible
to const ruc t simple, rapid, and
powerful evolutionary learning
hardware.

Otherwise, the limited processor
power and memorydo not slow this type
of modelling. In fact, the MPP
architecture may well offer the best
relative performance because much of
the data structure and flow is already
present in hardware.

FUTUREDIRECTIONS

At this point, the first part of
our proposed research has been largely
completed. Wehave largely developed
the theory for applying our learning
model to the route-finding problem,
and should begin MPP investigations
into this problem in early 1987. The
extension of these models to more
complex (reaction-diffusion) neurons
will be done largely by M. Conradwith
his former student K. Akingbehin. In
a related direction, some successful
ecosystem simulations have been
performed with more work expected
later this year.
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ABSTRACT

The Applicative Programming System Architec-

ture combines an applicative language interpreter with
a novel parallel computer architecture that is well suited

for VLSI implementation. The Massively Parallel Pro-

cessor can simulate VLSI circuits by allocating one pro-

cessing element in its square array to an area on a square

VLSI chip. As long as there are not too many long data

paths, the MPP can simulate a VLSI clock cycle very
rapidly. The APSA circuit contains a binary tree with
a few long paths and many short ones. A skewed H-

tree layout allows every processing element to simulate

a leaf cell and up to four tree nodes, with no loss in

parallelism. Emulation of a key APSA algorithm on
the MPP resulted in performance 16,000 times faster

than a Vax. This speed will make it possible for the

APSA language interpreter to run fast enough to sup-
port research in parallel list processing algorithms.

Keywords: parallel simulation, VLSI, tree architecture,

applicative language, functional language.

INTRODUCTION

The Applicative Programming System Architec-

ture research project (Refs. 4, 5, 6) (APSA) combines
VLSI hardware design, computer architecture, and pro-

gramming language research in one unified design for

a high level language implementation. The hardware

design of APSA uses parallelism extensively, making

it impossible to run realistic simulations on sequential

processors. This has been a major impediment in the

research on APSA. Fortunately, the Massively Paral-

lel Processor (MPP) provides exactly the kind of par-

allelism needed by APSA's hardware, as well as other

parallel VLSI architectures. This paper discusses the

goals and structure of the APSA research, and then it

describes the methods used for programming the MPP

to emulate APSA's parallelism. Finally, it discusses the
suitability of the MPP's architecture for this work.

The tasks of designing a programming language im-

plementation, a computer architecture for executing it,

and a low level fabrication of the hardware usually pro-

ceed independently of each other. As a result, there is
a small set of standard basic ways to relate these levels

of abstraction to each other: instruction sets provide an

interface between language and architecture, while reg-
isters, data paths and addressable memories relate the

architecture to the hardware. These standards greatly

limit the types of architecture and language that are
available.

The idea of "high-level language architectures" at-

tempts to improve a computer's performance by break-

ing away from the standard kind of instruction set, re-

placing it with a set of instructions especially well suited

for a particular programming language. Several manu-

facturers have built such systems, supporting languages
such as Algol, Cobol and Lisp. But these architectures

are still limited because they are built with conventional

hardware techniques and components.

The Applicative Programming System Architec-

ture research is moving toward improved performance

by designing the low level hardware, the high level ar-

chitecture and the language translator together. Ap-
plicative programming languages (also called functional

languages) have many advantages over conventional im-

perative languages, but they are notoriously slow in con-

ventional implementations. The problem is that stan-

dard instruction sets give poor support for the basic

data structure operations in applicative languages. Fur-
thermore, the standard methods for designing high-level

language architectures don't help much, because con-

ventional hardware techniques prevent the architecture

from supporting some of the most useful operations.

Research in applicative programming languages is
very active, and many examples exist. The current

work on APSA is focusing on two particular languages:

Scheme (a dialect of Lisp) and SASL. These languages
and their relatives play a central role in artificial intel-

ligence, and their use in other fields is expanding. Thus

it would be inherently useful to learn how to implement
such languages on the MPP.

The APSA architecture contains instructions for

manipulating lists, vectors, environments, and contin-

uations -- the key data structures for applicative lan-

guages. These instructions perform many operations in

a constant amount of time which would require itera-
tion in linear time with conventional instructions. For

example, consider a program that needs to find the last

element of a list. This normally requires a loop, where

I¢_,_DE_G PAGE BLANK NOT FILMED
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every iteration follows a pointer from one list element to
the next. APSA has an instruction that can find the last

element of a list in one cycle, and a similar instruction

allows indexing into a list to find the nth element in 1

cycle. Of course, Fortran can do the same thing with an

array on a conventional computer -- but Fortran cannot
then insert a new element into the middle of the array

in constant time. The point is not that APSA supports

a fast data structure operation, but rather that it sup-

ports many fast operations that can be applied to the

same data structure (Ref. 6}.

The power of APSA's instruction set results from

the ability of its memory to perform parallel logic op-

erations on data, in addition to just storing the data.

Each basic storage unit in the memory, called a cell,
can hold one word of data. An APSA word corresponds

roughly to a Lisp cons box or a Fortran array element.

The cells are organized into a linear address space, just

as in conventional computer memories. However, each

cell also contains low-level processing capability. In ad-
dition, there are two basic kinds of internal memory

operation that require parallel hardware; these opera-

tions lead to the differences between APSA memory and

conventional memory.

• Shift. Each cell reads the contents of its left

or right neighbor, performs a logic operation on

that value and its current state, and stores a new

value -- which may be its old value, the contents

of its neighbor, or another value (resulting from a

sweep operation). If a number of adjacent cells all
store the contents of their left neighbor, the net ef-

fect is that a sequence of words shifts right. Since

each cell's logic hardware controls the value that it

stores, some cells may do a shift while others re-

main unchanged. This allows the memory to insert

or delete a word in the middle of a data structure,

in one clock cycle.

• Sweep. The memory performs a global logic op-
eration on the contents of all the cells and an in-

put from the memory controller. Part of the logic

hardware computes a value that it returns to the

controller; this is how the controller is able to fetch

data from the memory. Other parts of the logic

compute independent values to be sent to each cell

in the memory. If we ask for arbitrary logic oper-

ations, the complexity of the hardware would get

out of hand. Therefore, APSA supports only logic

operations that can be implemented with a binary

tree of combinational logic components. This re-

striction leads to manageable but powerful hard-
ware.

The shift operation requires data paths connecting each

pair of adjacent cells, and the sweep operation requires

a binary tree of combinational logic whose root is a port
to the memory controller and whose leaves are the cells.

Figure 1 illustrates this organization.

Top

Figure 1. APSA Memory Organization

The reason that APSA algorithms cannot be used

in implementing applicative languages on ordinary com-
puters is simply that simulating the shift and sweep

operations takes too much time. At the very least, a

computer needs several thousand words of memory to

be able to run interesting programs. But that would

require a sequential simulator to operate separately on
several thousand cells and several thousand logic tree

nodes -- just to compute the effect of APSA's memory

during one clock cycle. APSA's algorithms are fast, but

they are not fast enough to overcome this speed penalty

of 3 to 6 orders of magnitude.

VLSI technology (very large scale integrated cir-

cuits) is good at implementing highly parallel systems

with large numbers of small components, as long as the
data paths connecting the components do not waste too

much area on the chip. There is a standard method for

laying out a binary tree on a square VLSI layout, where

the subtrees appear on opposite sides of the node above
them. For nodes at an even-numbered level, the sub-

trees are placed to the east and west; nodes at an odd-
numbered level have their subtrees placed to the north

and south. This results in the "H-tree layout" (Ref. 3).

It also turns out that adjacent cells in an H-tree can be

connected efficiently.

The original idea in the APSA project was to ex-

ploit the properties of VLSI in order to build a parallel

data structure memory. This VLSI design is currently

in progress, but there is another problem: details of the

design of the cells and the logic tree have a profound

impact on the large scale performance of the applica-
tive programming language. For example, a low level
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decisiononthe representation of data in a cell may af-

fect the frequency of garbage collections. Furthermore,

the system must run for thousands of cycles before such

effects show up. This has lead to a very serious diffi-

culty: simulation of the VLSI layout is far too slow to

allow enough experimentation with the system's over-
all behavior to be able to make correct decisions about

details of the VLSI layout!

The MPP provides exactly the same kind of paral-

lelism that VLSI does. Each processing element (PE)

combines storage with logic, and is connected to nearby
PEs. Thus it is possible to map a square VLSI layout

onto the square MPP array, with each PE performing

the function of the corresponding area of the chip. The

MPP also has a limitation: long distance communica-

tions are relatively slow because messages must be sent

along a path consisting of adjacent PEs. Long data
paths also lead to poor performance in VLSI, so good

chip designs tend to have a small number of long data

paths and a very large number of short ones. Such de-

signs are well suited for implementation on the MPP.

Ref. 7 describes the basic methods of digital cir-
cuit simulation and outlines how the MPP can simulate

VLSI circuits. The next section discusses APSA data

structure operations and parallelism, and the remain-

der of this paper is concerned specifically with the im-

plementation of APSA on the MPP. The APSA/MPP

program directly transfers all of APSA's parallelism into

MPP parallelism, so it seems more appropriate to call
it an emulator rather than a simulator.

DATA STRUCTURES IN APSA

A complete description of the data structures and

algorithms for APSA is beyond the scope of this paper,

but a brief example will clarify the general ideas. The

most interesting algorithms are for maintaining aggre-

gate data structures, environments, continuations and

for performing garbage collections. These algorithms

are too complex to discuss here, so this section describes

operations on a simple combined list/vector data struc-
ture.

APSA can represent the list (a b d e) in a com-

pact form by storing the list elements in consecutive

neighboring cells. Each cell contains a type field; we
are only concerned with the cells that contain a value.

In addition, each cell contains several flags. The at-

tached flag (denoted by _,) indicates that a cell repre-
sents a value in a list that continues on into the next

cell. Therefore all the list elements except the last will

be in cells with _, set. This leads to the following repre-
sentation:

va/ va; ya/ val

a b d e

Now suppose that we want to insert a new element

"c" into the list just after the occurrence of "b". This

takes three instructions. First, the program must locate

the point where the insertion should be made, using an

associative search. The match instruction does this, and

sets the select flag (denoted by -) in that cell:

va/ "va/ va/ val

a b d e

As the program inserts c into the list, it must move all

the elements before it to the left, leaving room for the

insertion. This will destroy the contents of the leftmost
cell, which is part of the available space list. However,

only the cells to the left of the point of insertion should

store the contents of their right neighbor; cells to the

right of the insertion must remain unchanged. There-

fore the program must compute another flag called mark

(denoted by o) which will control the shift. The mark
to select instruction sets o in all the cells that lie to the

left of the selected cell:

I ° I °_ "valval_'l va/ val [

I I a. I b I d e I

Now the program can issue the insert (c) instruction,

which causes each cell to perform an operation that de-

pends on its flag settings. Cells with o set will store
the contents of their right neighbor, the cell with • set

will store the instruction operand c, and all other cells

remain unchanged. The net effect is to insert c into the

list, while destroying one element of the available space

pool:

ol> ol> • I> _>

val val val val val

a b c d e

Note that such an insertion always takes three cy-

cles, regardless of where the insertion takes place. List

processing systems based on linked representation can
also quickly insert a new element. However, suppose

that the program now needs to find the fourth element

in the list. The linked list representation requires it-

eration to do this; the time to find the nth element is

proportional to n. APSA can index directly to the nth

list element, just as if the list is an ordinary vector.

First, the program uses the match instruction again to
select the beginning of the list:
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"va/va, va/ va, 1
a b c d e I

Next, the index (n) instruction directly locates the nth

element in one cycle. Thus index (3) produces:

va/ val va/ "va/ val ]

a b c d e

The point of this example is that one data structure

supports both vector and list operations. This leads to
a richer set of data structures and algorithms than con-

ventional computers provide. Notice that APSA used

parallelism inside each instruction, allowing it to per-

form a task using fewer instructions than a conventional
system.

APSA uses more complex hardware to execute

fewer instructions. This leads to a crucial question:

does APSA 's speedup in number of cycles overcome its

overhead in cycle time? Consider first the speedup. In-

dexing to the nth element of a list normally takes time
O(n), while APSA does this in time O(1). Many other

APSA algorithms show the same O(n) reduction in the

number of instructions executed. Calculating the over-

head in cycle time is a more subtle problem. At first

sight, it appears that APSA's cycle time is slower than

a conventional machine's by a factor of O(log n) because
of the tree. We normally think of a computer's RAM

memory as having a constant access time: as the prob-

lem size grows the memory does not slow down. How-

ever, that is only true as long as the memory is large

enough to hold the problem. And it turns out that as

the size of a RAM memory increases, its access time
slows down. There are two distinct reasons for this.

First, a RAM uses a decoder to select the addressed

word -- and a decoder is a tree of combinational logic.

Second, as a RAM grows in size its wires become longer,

and the electrical delay across the wires becomes signif-
icant. Of course, both of these factors affect APSA:

it contains log time delay in its tree, and as its mem-

ory grows its data paths become longer, requiring more
communication time. The final result is that

• the APSA memory has the same asymptotic cycle

time as a RAM memory, although it is slower by a
constant factor K, and

• fewer cycles are needed to run an algorithm on
APSA than on a conventional machine.

Table 1 compares the cycle time for RAM vs. APSA

using three different measures: counting one time unit

per cycle, considering the delay through the combina-

tional logic trees, and considering also the electrical wire

delay.

measure RAM APSA

constant 1 1

logic delay log n log n

wire delay v_

Table 1. Cycle time complexity

An APSA cycle is slower than a RAM's by a con-
stant factor K, which determines the actual attainable

speed. Fortunately, the MPP sheds light on the value

of K. The MPP contains a tree of logic that computes

the logical or of the P register in all 16,384 PEs. This

corresponds roughly to a 1-bit upsweep, and it takes
about half a microsecond. The APSA instructions re-

quire several bits going both up and down, but it should

still be feasible to attain a hardware cycle time on the

order of 10 microseconds, which would lead to excellent

performance. However, the emulator for APSA that
runs on the MPP takes several hundred microseconds

per cycle. This is good enough for extensive experimen-

tation, but will probably not be competitive with Lisp
implementations on conventional computers.

The preceding discussion concerned parallelism
within data structure operations. There is also another

level of parallelism. The APSA memory can perform

a parallel data structure operation on several different

data structures -- in parallel. For example, the Lisp

mapcar functional applies a function to every element
in a list. In some cases, APSA can execute all these

applications simultaneously. For example, the index
operation can index into many lists at the same time.

However, storage allocation can lead to problems. If a

program tries to perform many cona operations at the

same time, the system may require a number of cycles to

obtain all the new storage words that it needs. Further

work is needed to assess the potentials and limitations

of this form of parallelism.

A promising method for implementing applicative

programming languages is to translate them into com-

binators, which can then be reduced on an appropriate

architecture. APSA has the ability to reduce many com-

binators simultaneously, although a number of problems

with storage allocation remain. This looks like a good

approach for designing parallel combinator reduction
machines.

THE SKEWED TREE LAYOUT

The basic idea in mapping the VLSI memory de-

sign onto the MPP array unit is to simulate an area of

the chip with each processing element. If that is done
in a straightforward manner, only 1/4 of the PEs will

7_



Figure 2. Skewed H-tree layout
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simulate a memory cell; the others will be dedicated

to the tree nodes and the data paths connecting the

nodes, while some of the PEs would be wasted entirely.

The original VLSI layout for APSA had these properties
(Ref. 8). There is nothing inherently wrong with this

approach, but it is possible to go from a 4,096 cell lay-

out to a 16,384 cell layout without losing any potential

parallelism.

By placing one memory cell in each PE, the emu-

lator can perform all the cell logic operations in paral-

lel. The nodes never execute in parallel with the cells

anyway, because of data dependencies in the sweep al-

gorithm. This means that we lose no parallelism if each
PE simulates a node in addition to a cell. Furthermore,

the nodes execute simultaneously only at one level in

the tree at a time. For example, on an upsweep all the

cells execute, then all the bottom level nodes, then all
the nodes at the next higher level, etc. Therefore a PE

can simulate a cell and several nodes, as long as all of

its nodes appear at different levels in the tree.

These considerations lead to a "skewed H-tree" lay-

out that allows all 16,384 PEs to contain a cell. Each

data path between two subtrees is skewed to one side or

the other, so that its node and path elements actually

lie on top of one of the subtrees {forcing some PEs to
hold several nodes). We place the node and path on

whichever side yields the shorter data paths (and hence

the greatest speed).

Figure 2 shows the skewed layout for a 16x 16 array,
with 256 cells. Each cell is represented by its address

(the leftmost cell is 0 and the rightmost is 255). Small

black squares indicate nodes, while the data paths con-
necting nodes appear as thick lines. Thin lines show the

PE array, making it easy to see what cells, nodes and
paths lie in any PE.

This layout consists of a recursive sequence of

squares. A square is a structure with

• a central node near the center (i.e., in one of the

four PEs adjoining the true geometric center),

• data paths from the central node going east and
west to the eastern node and the western node re-

spectively, and

• data paths leading from the eastern and western
nodes to the northern subtrees and the southern
sub trees.

For example, consider the 2×2 square at the northwest

corner of Figure 2, consisting of cells 40-43. The central

node is at level 2 in the tree (there are 22 cells below
it) and it happens to be in the PE to the southeast of

the geometric center of the 2×2 grid: thus this node

has SE parity. The eastern and western nodes, both of

level 1, appear in cells 40 and 43 respectively. Since the

northern and southern subtrees are at level 0, they just
consist of cells. Notice that 2×2 squares appear with

all four possible parities: NE, NW, SE and SW.

The largest square (level 8, in cell 245) illus-
trates several points that affect the communication al-

gorithms. The eastern node has W parity, in order to
minimize its data path. For the same reason the west-

ern node has E parity. Both of these level 7 nodes in-

herit their N parity from the central node. One of the

data paths from a node to its subtrees will always be
shorter than the other one -- and the communication

algorithms must be able to handle this.

The skewed H-tree has a useful property: no PE

represents more than four nodes, regardless of the size

of the layout. That is significant because every PE must

allocate memory for one cell and all its nodes. Each PE

contains only 1024 bits, so an unbounded number of

nodes per PE would take too much space.

The sweep algorithm needs to know how long the

tree data paths are in order to control its shifting loops.

A simple recurrence equation yields the length di of a
long path from a node at level i down to its subtrees

(the short path has length di - 1):

dl = 1 d2 = 1 d3 = 1 d4 = 1

di = di-1 for i even, i > 4

di = 2di-1 for i odd, i > 4.

The sweep algorithm computes these recurrences as it

moves up or down the tree. Thus it must periodically
multiply the current d by 2 on an upsweep and divide d

by 2 on a downsweep. The sweeps run entirely in the PE

Control Unit, without any help from the Main Control
Unit, and the PECU has no scalar arithmetic facilities

-- so the sweep algorithm does its multiplications and

divisions using Peano arithmetic, completely in parallel
with other operations!

It is possible to place data paths connecting neigh-

boring cells in the existing tree structure. Using that
method, a shift operation would send data from a cell

part way up the tree, and then back down the other

branch of the tree to the neighbor. This is probably the

best way to implement the cell neighbor data paths in
a VLSI layout, because it reduces the number of wires

that must cross each other. However, it is faster on the

MPP to route data in a straight line from each cell to its

neighbor, and the APSA emulator takes this approach.

The shift algorithm operates by sending the con-

tents of each cell to its neighbor within one layout

square. It repeats the process for each square, working

from the smallest square size (2x2) up to the largest
(normally 128x128). At each square size, all squares
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dk

01

02

03
04

11 r ---*

1 2 rsr

1 3 rsr ---*

1 4 rsr --*

1 5 rsr ---*

1 6 rsr ---*

21 r ---*

2 2 rsr --*

2 3 rsrsr
2 4 rsrsr

2 5 rsrsr ---*

2 6 rsrsr ---*

2 7 rsrsr --*

31 r --*

3 2 rsr --+

3 3 rsrsr ---*

3 4 rsrsrsr

3 5 rsrsrsr ---*

3 6 rsrsrsr ---*

3 7 rsrsrsr --+

3 8 rsrsrsr ---*

41 r

4 2 rsr --_

4 3 rsrsr --*

4 4 rsrsrsr ---*
4 5 rsrsrsrsr

4 6 rsrsrsrsr --*

4 7 rsrsrsrsr ---*

4 8 rsrsrsrsr

49

sequence of operations

rw

rw rw

rw rw rw

rw rw rw rw

8 ---+ w

"-+ W 8W

wsr _ w 8w

wsr wsr ----+ w 8w

wsr wsr wor .-+ w 8w

wsr wsr wsr wsr _ w sw

88 _ w

8 --'+ wsw

----+ w 8w 8w

wsr _ w 8w 8w

wor wsr _ w 8w sw

wsr wsr wsr -.+ w 8w 8w

wsr _)sr wsr wsr _ w sw sw

888 "-* w

s s ---+ w sw

8 _ w 8w 8w

----+ w 8w 8w 8w

w8r ---+ w 8w 8w 8w

wsr wsr _ w 8w 8w 8w

wsr wsr wsr --+ w 8w 8w 8w

wsr wsr wsr wsr --_ w sw sw sw

8888 ----+ w

888 --'+ WSW

88 --+ W SW SW

S ---_ W 8W 8W 8W

--+ W 8W 8W 8W 8W

wsr ----+ w 8w 8w 8w 811)

u)sr wsr -.+ w sw sw sw sw

wsr wsr wsr .-_ w sw sw sw sw

r sr sr sr sr ---+ w8r wsr wsr wsr ----* w 8w sw sw sw

Table 2. The pattern of communications for send

parity of the square's central node. Since central nodes

appear with each of the four parities NE, NW, SE, SW,

each of the four data movements will be invalid for 1/4

of the squares.

Fortunately, the invalid fields left by data move-

ment at one square level are all overwritten when the

shift algorithm does the next higher level. After doing

the 2×2 squares, the corner cells of all the 4×4 cells

send their data to their neigbors (within the square).

For the 4x4 square in the northwest corner of Figure 2,
the four corner source cells are 35, 39, 43 and 47 -- so

the west move writes the contents of cell 39 into cell 40,

replacing its old invalid contents left by the 2x2 moves.

Of course, 1/4 of the moves at this level are also in-
valid, but when the shift algorithm reaches the highest

square level (128×128), the only cell that remains with

an invalid neighbor input field is the leftmost cell in the
entire memory: cell 0 holds the contents of cell 255.

If the shift algorithm was called to rotate the memory,

this is the desired effect. Otherwise, after handling the

highest level square, the shift algorithm writes a value

into cell 0 that it receives from the memory controller.

THE COMMUNICATION ALGORITHMS

The sweep and shift algorithms must move k bits

(called the data path width) from a set of source PEs

to the corresponding destination PEs. The preceding
section outlined how shift and sweep locate the sources

and destinations and calculate the path distances d for

each move. It is also important to consider the details

of the data movement algorithm, send, because this is

the innermost loop of the APSA emulator, accounting
for much of the total execution time.

One factor simplifies the implementation of send:

all of the movements that it must perform at once go

in a straight line for the same distance d. However, two

other factors complicate it:

in the system participate simultaneously in the shift,

which sends data between the four corners of the square.

For example, at the 2×2 square size in Figure 2, a shift

right operation (moving the contents of cell i to the

neighbor input field of cell i + 1) causes the contents of

cell 40 to move north to 41, while cell 41 moves west to

42, 42 moves south to 43, and 43 moves east to 40. All

other 2×2 squares perform this pattern of moves at the
same time.

In general, the four data movements (north, west,

south and east) will include three legitimate movements
and an invalid one. Thus it was invalid to move the

contents of cell 43 east to 40. However, the particular
direction of movement that is invalid depends on the

• Simultaneous movements may go in different di-

rections. In particular, sweep always needs to send

data east and west, or north and south. The shift
algorithm always sends data all four directions.

• The two key parameters of a send -- the distance d
and the number of bits k -- are variables computed

by the calling algorithm. Therefore the send code
must be flexible enough to handle automatically

any combination of d and k.

Sending a bit from the source to the destination

involves three basic operations:

r read the bit into the source PE;



s shifteachbit onthedatapathonePEcloserto the
destination;and

w write the bit into the destination PE.

Since all the data paths have the same length and width,

and none of them cross each other, we can concentrate

on what happens to the data during a single movement.

Any send operation consists of a pattern of the r,

s and w primitives. For example, rsssw will send a

single bit (k=l) along a path 3 PEs long (d=3). The
situation is more complex when k > 1. In order to min-

imize the communication time, it is essential to pipeline

data along the path. This leads to a number of distinct

patterns of communication, illustrated by Table 2. The

send algorithm must use the values of d and k to deter-

mine the best communication pattern.

All the sources, destinations and data paths neces-
sary for sweep and shift must be marked in advance by

an initialization algorithm. The initializer's main func-

tion is to compute a set of mask lists, one for every node
level in the tree. Every processing element has its own

set of mask lists, and each one contains 14 individual
masks that indicate whether the PE contains a node at

each level in the tree, what the nodes' parities are, and

what data paths pass through the PE. The mask lists

allow the r, s and w primitives to operate in the rel-
evant PEs without disturbing data in the others. For

example, the r primitive places a "node present" mask

in the G register, and then executes a loadm P. SOURCE
instruction.

ORGANIZATION OF THE EMULATOR

The APSA system breaks naturally into three com-

ponents, and the MPP implementation reflects this

structure by running the components on separate com-

puters:

• The memory instruction set, which provides the

heart of APSA's parallelism and which requires

simulation of a VLSI architecture layout, runs

entirely in the Processing Element Control Unit

(PECU). This software, written in Pearl, includes

the initializer, shift and sweep algorithms, as well

as the node and cell logic functions for each instruc-

tion. The speed of these programs is of paramount
importance for the overall goals of the research.

• The memory controller and applicative language
interpreter, written in MCL, reside in the Main

Control Unit (MCU), and issue instructions to the

APSA memory through the call queue.

• The I/O system, written in Fortran, runs on the
MPP host.

PERFORMANCE RESULTS

This section discusses the performance of the em-
ulator's initializer and sweep algorithm. The shift al-

gorithm is similar to sweep, but it will run consider-

ably slower because its data path width will usually be

around 64 bits, while typical sweeps only require 3 or 4
bits.

The MPP execution times were measured using the

performance monitor, which is extremely accurate and

repeatable. In addition, the MPP simulator predicted

the same performance times for the smaller APSA lay-
outs.

All of the emulation algorithms (initialize, sweep

and shift) take a parameter that specifies the size of the

APSA layout -- they don't depend on the 128x 128 size

of the MPP array unit. In general, the layout may be

n×n for any n that is a power of 2. Consequently, the
height of the binary tree may be any even number.

Table 3 shows the time required to initialize APSA

for all the layouts that fit in the MPP array. While

growing a layout the initializer must perform one com-

plete shift and five complete downsweeps, in addition to
performing several other functions. The Layout column

shows the dimensions of each APSA layout. The Level

column gives the height of the binary tree for each lay-

out; thus a layout with Level-=n will contain 2'* Cells.

The Square column shows the depth of recursion in the
H-tree layout, which is also the number of iterations in

the outer loops of the sweep and shift algorithms.

Square Level Layout Cells Time (lls)

1 2 2 × 2 4 270

2 4 4×4 16 429

3 6 8x 8 64 596

4 8 16X16 256 784

5 10 32x32 1,024 1,019

6 12 64X64 4,096 1,339
7 14 128x128 16,384 1,817

Table 3. APSA initialization times in ps (MPP)

Table 4 gives the MPP execution times of the up-
sweep algorithm for data paths that are 1, 2 and 3 bits

wide. (The downsweep algorithm is almost identical.)
There are three phenomena that account for the vari-

ations among these times. First, the number of itera-

tions of the main sweep loop and the number of calls

to the node logic function both depend oh the layout

size (the Square column in Table 3 gives these values).

Second, the data paths become longer toward the top

of the tree in larger layouts -- that is why the execu-

tion time grows faster than linearly as a function of the

Square size. Third, the width of the data path (i.e.,
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Layout 1 Bit 2 Bits 3 Bits Increase

2x2 12 17 23

4x4 20 31 42 +19

8x8 29 45 62 +20

16× 16 39 62 85 +23

32x32 51 80 110 +25

64×64 68 104 140 +30
128×128 95 137 179 +39

Table 4. Upsweep times in ps (MPP)

Layout MPP Vax 780 Speedup

2×2 23 610 27

4×4 42 2,500 60

8×8 62 10,500 169

16×16 85 53,000 624

32×32 ll0 175,000 1,591
64×64 140 706,000 5,043

128×128 179 2,872,000 16,045

Table 5. Comparison of upsweep times in ps

the number of bits being sent up the tree) determines

the number of iterations of sweep's inner loop, and the

node logic function also requires more time to operate
on more bits.

At this point it is interesting to consider the impli-
cations of Table 4 on the future course of the APSA re-

search project. Serious development of parallel Lisp and

SASL will require a moderately large memory. That

is why the emulator supports a skewed H-tree instead
of the conventional H-tree: it can place a memory cell

in every MPP processing element, providing the largest
memory size that is possible without loss in parallelism.

Therefore we are primarily interested in the last line of

Table 4, which gives sweep times for a 16,384 cell mem-

ory. Assuming two sweeps and several parallel opera-
tions in all the cells, a typical APSA instruction should

take about half a millisecond. This is certainly ade-

quate for extensive experimentation and development.
There is also the possibility that some applicative algo-

rithms may by able to perform the equivalent of several

hundred operations simultaneously. If that happens,

the MPP/APSA system could partially achieve a long-

standing goal of the programming language research

community: automatically speeding up a list process-

ing program on a parallel machine, without requiring

the programmer to specify any parallel operations (Refs.

11, 12). Of course, this goal is still far in the future.

Table 5 illustrates what the future of APSA would

be like without the MPP: it repeats the upsweep times

for a 3 bit data path and compares them with an APSA

upsweep algorithm running on a Vax 780 computer.

The Vax program is written in C, and it exploits some
of the standard techniques for efficiency in C (for ex-

ample, it increments pointers into arrays in order to

avoid most array index calculations). These timings

were generated using the "time" command in Berke-

ley Unix 4.2BSD, and there is an error range of about
+10%. The columns headed MPP and Vax 780 give the

running time in microseconds of a 3 bit upsweep on each

layout size. The Speedup column gives the ratio of Vaz

780 time divided by MPP time. It is important to real-

ize that these figures do not show how much faster the

MPP is than a Vax. They merely indicate how much

the performance of upsweep can be improved by moving
from a Vax to the MPP.

For the case of most interest -- a 3-bit upsweep

on a full 128x128 layout -- the MPP requires 179 ps,
while the Vax takes 2.87 seconds. At this rate, one

MPP-minute of upsweeps would correspond to eleven

Vax-days of CPU time. Thus the MPP makes it easy

to run emulations that would be inconceivable using

conventional computers.

DISCUSSION

The speedups in Table 5 may appear surprising,
because the MPP is nominally only on the order of 512

times faster than a Vax (it has 16,384 times more pro-
cessors and its word size is 1 biL compared with 32

on the Vax). But the actual performance speedup de-
pends in detail on the interaction between the algorithm

and each computer's architecture. In particular, the up-

sweep algorithm is inherently bit serial, so the large Vax

word length does not help at all. Theshift algorithm

uses long words, so the MPP's speedup will be much

smaller than for sweep.

It would be extremely valuable to investigate the

performance of APSA on a Connection Machine (Ref.

2) and compare it with the results given above. Since
the Connection Machine contains a network with long

data paths, it will be faster than the MPP for suffi-

ciently large layouts. On the other hand, the MPP's

faster cycle time should make it faster for smaller lay-
outs. Table 4 shows that much of the time for an up-

sweep for a 128x128 layout goes into bit-serial opera-
tions and the node logic functions, where the MPP is

faster. The longest data paths have length 32; the MPP

is.probably still faster than the Connection Machine at
this size because of its synchronous communications and
fast clock.

There are several other approaches to parallel im-

plementation of Lisp and related languages. Multil-

isp (Ref. 1) gives the programmer a parallel construct
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called a future, which allows parallel evaluation of in-

dependent expressions. Multilisp is being used to pro-

gram an MIMD parallel computer. Connection Machine

LISP (Ref. 10) takes an approach similar to APSA: it

makes parallel data structures available to the user pro-

grammer. However, it does not integrate parallel data
structures as deeply into the interpreter's environment
and continuations as APSA does. Another method for

implementing car and cdr on the MPP (Ref. Potter) al-

lows parallel searching of many lists, but its cons func-

tion requires time and space proportional to the length

of the second argument.

CONCLUSION

The Applicative Programming System Architec-

ture research is concerned with designing an applicative

language, a computer architecture and a VLSI hard-

ware implementation together, so that they cooperate

effectively. This research is leading toward better lan-

guage implementations and new architecture designs.
However, simulating the low level hardware on a con-

ventional computer is too slow to allow experimentation

with APSA's parallel algorithms.

The Massively Parallel Processor is ideal for simu-

lating VLSI circuits that have regular designs and short

data paths, such as systolic arrays. The VLSI layout for
APSA's memory contains parallel logic in every mem-

ory cell and a binary tree for communications and ad-

ditional logic. The tree layout contains only a few long

paths, so it is well suited for implementation on the

MPP. The key tree communication algorithm shows a

huge speedup -- by a factor of 16,000 -- compared with
simulation on a conventional computer.

The basic APSA operations are fast enough on the

MPP to allow experimentation with a realistic paral-

lel implementation of an applicative programming lan-

guage, and a parallel implementation of Lisp is in

progress. Thus the MPP is making it possible to study
new ideas in parallel VLSI architectures.
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Many of the models now used in science

and engineering are over a century old. And
most of them can be implemented on modern

digital computers only with considerable
difficulty. This paper discusses some new basic
models which are much more directly suitable

for digital computer simulation.

The ultimate purpose of most scientific

investigations is to determine how physical or
other systems will behave in particular cir-
cumstances. Over the last few years, computer

simulation has been emerging as the most
effective method in many different cases. The
basic approach is to use an algorithm which

operates on data in the computer so as to emu-
late the behaviour of the system studied (e.g.
[1]). This algorithm can be considered to pro-

vide a "computational model" for the system.

Theoretical investigations of physical sys-
tems have conventionally been based on a few
definite classes of mathenmtical models. By far

the most common are partial differential equa-
tions (e.g. [2]). These equations were designed
to describe systems such as fluids which can be
considered as continuous media. Calculus was
used as a tool to find mathematical formulae for

the solutions to these equations. This allowed
great progress to be made in the understanding

of many phenomena, Ixuaicularly those such as
electromagnetism, which are by linear partial

differential equations. Progress was also made in
studies of processes such as laminar (regular)
fluid flows, which can be approximated by

linear partial differential equations. But the stan-

dard methods of mathematical analysis made lit-
tle headway on problems such as fluid mr-
buleuce, for which non-linear partial differential
equations are essential.

When digital computers became available,

it was natural that they should be used to try
and find solutions to such partial differential

equations. But digital computers can represent
such equations only approximately. While
equations involve continuous variables, digital

computers can treat only discrete, digital, quan-
tities. The real numbers which correspond to
continuous variables in the equations must be
represented on the computer by packets of bits,
typically in the form of 32 or 64 bit numbers in

fluating-point format. In addition, the derivates

which appear in the equations must be approxi-
mated by finite differences on a discrete grid.
Much effort has been spent in numerical

analysis to show for example that with
sufficiently fine grids, exact solutions to the con-

tinuum equations can be found. Unfortunately,
such theorems have been proved almost
exclusively only in cases where exact solutions

to the continuum equations are known. For most
important non-linear equations, quite ad hoe

methods must be used to gauge the accuracy of
approximations.

Nevertheless, the thrust in scientific com-

putation has been to develop computer hardware
and algorithms which allow more and more

extensive approximations to partial differential

* Also to appear in High Speed Camputing: ScientificApplicationsand Algorithm Design, edited by Robert B.
Willhelmson,(University¢_ lllinois Press.1987).
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Figure 1: Examples of pancnrs genaated by simple onedimensional cellular automata. The cellular 
automaton consists of a TOW of about 600 sites. whose values evolve with time down the page accord- 
ing to simple logical rules. 'Ihe value 0 or 1 of each site (represented by white or black) is determined 
from its own value, and thc values of its two nearest neighborn on the step before. patterns generated 
by four different rules are shown. In each case. the pattern obtained with an initial state containing a 
single nonzero site k shown above, and a pauern generated with a random initial state is shown below. 
(In thc notation of ref. [3], the nrles are numbers 18, 45. 73 and 110.) Despite the simplicity of these 
cellular automata, the paaans genaated show considerable compl&ty. 



in this system by considering the values of bulk

quantities such as particle density or momentum
density, averaged over a large lattice regions.

Figure 2 shows some results obtained in
this way. Detailed studies have demonslrated

that many of the phenomena seen in actual fluid
experiments can accurately be reproduced by
this simple cellular automaton model. Figure 2
shows calculations of two-dimensional flow past

a cylinder. The standard transition from steady

flow to a regular vortex street is observed.
Then at higher Reynolds numbers (dimension-
less fluid flow rates) the vortex street is seen to

become aperiodic, corresponding to the onset of
turbulent behaviour.

The cellular automaton method used in

figure 2 may well be practical for many fluid
dynamics computations. Through its close
correspondence with the underlying physics of
fluids, it is straightforward to include many phy-
sical effects and constraints. Thus for example

solid objects with arbitrary shapes, and possibly,

say, flexible boundaries, can easily be treated. In
our current implementation on a Connection
Machine computer with 65536 processors, lat-

rices of size say 4096><8192 can be updated at a
rate of about 109 sites per second, allowing the

fluid flow patterns around objects to be found
interactively up to Reynolds numbers of several
hundred. The readily scalable architecture of the

Connection Machine computer makes much
larger simulations with the same method quite
feasible in the future.

At a theoretical level, cellular automaton

fluid models can be analysed by much the same
methods of statistical mechanics as have been

used in trying to derive the Navier-Stokes equa-
tions for physical fluids from the microscopic
dynamics of real molecules. One approach is to

use kinetic theory to derive transport equations

for the average densities of particles with partic-
ular positions and directions (e.g. [8]). In the
hydrodynamic limit, these microscopic average

densities can be approximated through a
Chapman-Enskog expansion in terms of macros-
copic fluid densities and velocities. The result-

ing equations for these macroscopic quantities
correspond closely with the usual Navier-Stokes

equations. Just like a real fluid, however, the
cellular automaton model contains definite

higher-order corrections, not included in the

Navier-Stokes equations. In addition, analytical
methods provide only approximate values for

parameters such as viscosity;, accm'ate values

must be obtained from explicit computer simu-
lations.

A fundamental assumption of the kinetic
theory method is that the microscopic

configurations of particles can be specified
purely in terms of probabilities, which are in
turn determined by the values of averaged quan-

tities. This is essentially equivalent to the
assumption of thermodynamic equilibrium, and
is related to the fundamental principles of ther-

modynamics.

The Second Law of thermodynamics sug-
gests tim even if the initial contiguration of par-
ticks is orderly, it will become progressively
more disordered as a result of the motion and

collisions of particles, and will show for exam-

ple an increasing coarse-grained entropy. This
phenomenon occurs if the evolution of the cellu-
lax automaton, even from "simple" initial con-

ditions, yields behaviour that is so complicated
as to seem random for practical purposes.

Very simple examples of cellular auto-
mata are known in which such apparent ran-

domness can be produced. Figure 3 shows a
one-dimensional example [9,10]. Even slatting
from an initial state containing a single nonzero

site, many features of the pattern produced, such
as the sequence of values in the center vertical

column, are sufficiently random that they pass
standard statistical tests of randomness [9]. The
cellular automaton evolution thus acts like a

pseudorandom number generator:, even though a
simple seed is given, the algorithm yields

sequences whose simple origins cannot be dis-
cemed. The evolution of the system thus
effectively "encrypts" the initial data: given

just the output sequence it is very difficult to
deduce the original seed. The cellular automaton

of figure 3 can in fact be used as an efficient
practical random sequence generator or stream

encryption algorithm [11] (it is for example the
primary pseudorandom generator used on the
Connection Machine computer).

There are many mathematical systems
which act in this way. It is for example easy to

specify _, or to generate its digits. Yet once
generated, the sequence of digits seems random

for all practical purposes. Observations of this
kind are related to the general conjecture of

computational complexity theory (e.g. [12]) that
P_NP. Computations which can be performed in
polynomial time (P) seem to have reverses
(which must be in the class NP) that require
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Figure 2: Fluid flow pattean obtained from a simple twodimens id  cellular automaton, simulated on a 
Connection Machine computer. The cellular automaton consists of 4096x2048 site hexagonal grid. 
Each site carries up to six discrete panicles. which move and collide according to a simple discrete 
idealization of molecular dynamics. On a small scale, the particle motions appear random. But on a 
large scale, there is evidence that their average motion corresponds to that expected from a fluid which 
obeys the usual Navier-Stokes partial differential equations. In this figure, pamcles are injected on the 
lefs leading to a net fluid motion from left to right A circular obstacle is insated in the fluid, and the 
resulting fluid velocities are computed by averaging individual particle velocities over 96x96 site 
regions. The velocities in the figure are shown transformed to the frame in which the obstacle is mov- 
ing, and distant fluid is at rest. The simulation corresponds to a dimensionless Reynolds number around 
100, and shows the formation of a “vortex street” behind the cylinder. as observed in physical experi- 
ments. The computations were performed with help from Bruce Nmnich and Jim Salem, on a Connec- 
tion Machine computer with 65536 Boolean processors. The results shown w m  obtained after Id time 
steps. 

Figure 3: Pattern genmted by a one-dimensional cellular automaton with two possible values at each 
site, and rule o’i = (akl + ai + uh1 + oiui+,), starting from a single n o m  site. Despite the simplicity 
of its specification. many aspects of the pattern seem random. For example, the center column of site 
values passes all standard statistical tests of randomness. This cellular automaton illustrates the rather 
general phenomenon that simple processes can lead to complexity that is so great that many aspects of 
it seem random. 
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equations to be made. Thus, for example, the

performance of computers is often measured in
terms of the rate at which they can carry out the

floating point operations needed. In many cases,
there seem to be limitations which will prevent
rapid increases in such performance.

Significant progress may perhaps more
easily be made by somewhat shifting the

emphasis. The kinds of operations which can
efficiently be carried out by digital electronic
circuits, and thus digital computers, are quite

clear. Large numbers of simple logical opera-
tions can be performed, potentially in parallel

on many elements of a regular grid. Given the
structure, one may then ask the question of
whether accurate computational models based

on this structure can be found for physical and

other systems.

Cellular automata (e.g. [3,4]) provide one

class of examples. A cellular automaton consists
of a discrete lattice of sites. Each site carries a

discrete value, chosen from a small set of possi-
bilities. The values are updated in a sequence of

discrete time steps, according to logical rules
which depend on the valees of neighboaring
sites. Cellular automata are thus, by consa'uc-

tion, almost ideal for simulation on digital elec-
manic computers. They are particularly well

suited for the coming generation of massively-
parallel machines, such as the Connection
Machine computer [5], in which a very large

number (currently 65536) of separate processors,
each simple, act in parallel.

One of the most remarkable results of
recent studies on cellular automata is that even

with very simple rules, it is possible to obtain
behaviour of considerable complexity [3,4]. Fig-

ure 1 shows a few examples. The rules consist
of just a few simple logical operations. But
when they are applied over and over again, their

collective effect can yield very complex patterns
of behaviour. Oftea these show striking similari-

ties to forms seen in many natural systems, and
in other mathematical models for these systems.

Chaotic behaviour, corresponding to mange
attractors, is common in cellular automata. Frac-

tal patterns are also, for example, often pro-
duced.

One thus expects that very simple compu-

tational models, based say on cellular automata,
should suffice to reproduce many different

natural phenomena. The challenge is to abstract
the essential mathematical features of the

phenomena, so as to be able to capture them in
as simple a model as possible.

As one example, I shall discuss here some

recent models for fluid flow phenomena, based
on cellular automata (e.g- [6]).

Fluids are conventionally described by the

Navier-Stokes partial differential equations (e.g.
[7]). These equations can presumably in princi-
ple describe the important phenomenon of fluid
turbulence. But digital computer simulations

based on the Navier-Stokes equations are barely
able to reach the regime needed to reproduce
turbulence accurately. Of course, the Navler-

Stokes equations are themselves an apwoxima-
tion. At a fundamental level, fluids consist of

discrete particles, usually molecules. The
Navier-Stokes equations give an approximate

continuum description of the average behaviour
of large numbers of such discrete particles.
When the Navier-Stokes are simulated on digital

computers, however, discrete approximations
must again be made. These approximations,
perhaps in the form of finite differ, bear

little resemblance to the original system of
discrete particles. Yet in the limit of a large
number of discrete elements, they too should
correspond to the continuum Navier-Stokes
equations.

A wide variety of systems, with very
different microscopic dynamics, in fact appear

to follow the Navier-Stokes equations in the
large-scale limit. Thus, for example, air and
water, despite their very different molecular

constitution, can both be descnl)ed by the
Navier-Stokes equations, albeit with diffeae.nt
values of parameters such as viscosity.

In an attempt to devise the most efficient

computational models for fluids, one may try to
find the simplest microscopic dynamics which

reproduces the Navier-Stoke_ equations in the
macroscopic limit. Such models may correspond
to optimal algorithms for determining the

behaviour of a fluid using a digital computer.

One class of computational models is

based on a simple discrete idealization of
molecular dynamics [6]. Panicles move in
discrete steps along the links of a fixed lattice,

with each link supporting say at most one parti-
cle. The particles collide and scatter according

to simple logical rules. The rules are arranged
so as to conserve the total number of particles,
and the total momentum carried by these parti-

cles. Huid behaviour can potentially be obtained
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more than polynomial time, and probably often
correspond to computa6ons that are infeasible in

practice.

Many mathematical models of physical
processes probably show such behaviour [10].

Even with simple initial data, they rapidly yield
configurations which seem random for practical

purposes. Such behaviour may well be the basis
for the widespread validity of the Second Law

of thermodynamics. One of its important conse-
quences is that a prohabilistic or statistical
description should indeed be valid for many sys-
tems such as cellular automaton fluid models.

Such a description would depend only on
macroscopic average variables. This may
explain why different microscopic models often

yield the same macroscopic behaviour. It is
basic reason that simple discrete dynamics can
give essentially the same overall behaviour as

the full dynamics of physical molecules.

Statistical descriptions of cellular automa-
ton fluid models are close in form to explicit

finite difference approximations to partial
differential equations. In both cases, each site on

a grid carries a continuous variable which
describes the average density and velocity of the
fluid at that point. In practical computatiohs
with the finite difference method, this variable is

typically represented directly as a floating-point
number. In the cellular automaton method, the

variable can be viewed as represented in a pro-
babilistic or statistical fashion.

Following the usual development of sta-
tistical mechanics, a statistical description of a
cellular automaton fluid can be obtained as an

average over an ensemble of possl%le micros-

copic particle configurations. But an actual cel-
lular automaton fluid simulation involves the

evolution of just a single, specific, microscopic
configuration.Nevertheless, followinga funda-

mentalassumption of statistical mechanics, one
expects that suitable space or time averages of
this specific configuration should yield results

which are close to those obtained from averages
over the whole ensemble.

This interpretation allows a comparison
between cellular automata and discrete approxi-
mations to partial differential equations. In the

latter case, ensemble average properties are con-
siderod, and their evolution is followed pre-

cisely. In the former case, just a single instance
of the ensemble is considered, and macroscopic

quantifies are obtained as explicit averages over

92

microscopic variables.If the fundamental

assumptionsof statisticalmechanics are indeed

valid,one expectsthatthe cellularautomaton

method cannotfailtobe more efficientthanthe

finitedifferenceone. For much of the informa-

tionmanipulated in the finite difference case is
undoubtedly irrelevant to the macroscopic
behaviour of interest.

Some evidence for this comes from the

fact that most fluid computations yield results

which are accurate to at most the percent leveL
Yet in the finite difference approach, fluid velo-
cities at individualgrid points are typically

stated to 16-decimal-digit accuracy. Presum-
ably it is only the most significant few digits,
and certain overall features of less significant

digits, which affect the final results. In the cellu-
lar automaton method, all bits of information

about microscopic particle configurations are

equally important. The cellular automaton
repre_ntation may thus be a more efficient
encoding of the state of the fluid.

The cellularautomaton approach to fluid

dynamics is but one example of an expanding
set of computational models which are based on
the collective properties of large numbers of

simple discrete components. Standard cellular
automata with deterministicrules have been

used as models for reaction-diffusion systems,

dendritic growth processes, dynamic spin sys-
tems, aggregation processes, and many other

phenomena (e.g. [3]). Intrinsically probabilistic
rules can also be used, and their consequences
deduced by Monte Carlo sampling. The result-

ing models have been used extensively in study-
ing quantum fields and many other systems.

In practice the probabilistic elements of
such models must be implemented on digital

computersusingpscudorandom number genera-

tionalgorithms.The resultingcompletecompu-

tationalmodel, including the pscudorandom

number generator, must thus be entirely deter-
ministic. And since even very simple deter-
minisficcellularautomata can yield a high

degreeof randomness,one expectsthatformally

probabilisticmodels can be replacedby deter-

ministicones,often involvinga smallertotal

number of steps.One example of thisoccurs

forthe Isingspin systemmodel, which iscon-

ventionally studied by updating spins probabil-
istically, hut for which a more efficient algo-
rithm based on a simple deterministic cellular
automaton is known [13].



In general, there may be many different
cellular automaton models for any particular

system. Although the microscopic rules are
different, their large-scale or continuum
behaviour may be equivalent. In seeking the
most efficient simulation algorithm for a partic-

ular system, one must find the "simplest" cellu-
lar automaton rules which yield the required

large-scale behaviour.

Most computational models are created by
explicit construction. Like most computer pro-
grams, each step or feature of their construction

is specifically designed to have particular,
known, consequences. But in most cases, this

methodology will not yield truly optimal pro-
grams. Instead, one may imagine defining par-

ticular goals or constraints, and then searching
the space of possible programs for the optimal
ones which achieve these goals (e.g. [14,15]).

This approach is particularly promising for
problems such as finding optimal cellular auto-
maton roles, in which the space of possible pro-

grams has a comparatively simple structure.
Thus for example one may consider searching
for the simplest cellular automaton rule which

has a particular form of large-scale behaviour.
Typically the space of possible rules can be
reduced by imposing certain constraints, such as

microscopic conservation laws, but the suitabil-
ity of any particular rule can usually be deter-

mined essentially only by explicit simulation.
The randomness-generating rule of figure 3 was
found by such a search-based method.

The problem of finding optimal cetlular
automaton rules is in many ways analogous to
problems such as the optimization of Boolean

logic circuits, or the layout of large-scale
Integrated circuits. The overall goal is de.fined

by the function to be implemented, but the most
efficient circuits or rules can usually not be
obtained by expficit construction. Instead one

searches a large number of candidates, typically
using a computer, and finds which of them is
best.

Rather than performing an exhaustive
search of possible circuits or rules, it is often
better to use an iterative or adaptive procedure.
One begins with a particular circuit or rule

which has been constructed to satisfy the con-
straints that have been imposed. Then one

makes a sequence of "moves" in the space of
possible roles or circuits, with each move

arranged so that the constraints are still satisfied.
In the simplest cases, each move is chosen to

yield a circuit or rule which is more optimal, or
may be considered to have a lower "cost". But
such a "gradient descent" method can find

optima only when the "landscape" associated
with the problem (whose height gives the cost
for a circuit represented by a particular poinO is

essentially a smooth bowl. For many actual
problems, the landscape seems closet to a
"mountainous" or fractal one, on which the

gradient descent method will get stuck in local
optima. Simulated annealing seems to be a more

promising general technique for optimization in
such cases [161. With this method, randomness

is introduced Into the choice of moves. Initially,
a high level of randomness is used, so that the
moves are sensitive only to the gross features of

the landscape. The randomness is progressively
decreased, so that optimization is carried out
with respect to smaller and smaller scale
features of the landscape.

As one example of such "adpative pro-
gramming", I have recently been searching for
the simplest one-dimensional cellular automaton

rule which reproduces the diffusion equation in
the large scale limit. (For another example, see
ref. [171). The rule must conserve a scalar addi-

tive quantity (analogous to particle number), but
must generate randomness on a microscopic
scale. In addition, the rules were chosen to be

microscopically reversible, so that, by analogous
with real physical systems, the evolution of the

system can be uniquely reversed. Figure 4
shows the behaviour of a rule found by a search
over a particular class of simple rules. Starting
from a simple initial state, the rule generates

progressively mote random microscopic
configurations. Although the simple initial con-

ditions can in principle be recove.r_ at any time
by reversing the evolution, it becomes progres-
sively more difficult m do so. As discussed

above, this phenomenon may well illustrate the
fundamental basis for the Second Law of ther-

modynamics. With the rule of figure 4, macros-

copic average densities should follow the
diffusion equation. As a result, slow spatial vari-
ations in density are for example damped on

average according to the diffusion equation.

This paper has discussed some new direc-
tions for computational modelling. The funda-

mental principle is that the models considered
should be as suitable as possible for implemen-
tation on digital computers. It is then a matter
of scientific analysis tode_ermine whether such

models can reproduce the behaviour seen in
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Figure 4: P a m  genaated by a simple cellular automaton rule intended to mimic onedimensional 
diffusion. Starting from a simple initial state, the reversible cellular automaton rule yields states that 
seem progressively more random. Such behaviom corresponds to that expected from the Second Law of 
thermodynamics, and can form the hasis for simple &rete cellular automata to show macroscopic 
avaage behaviour which mimics continuum phenomena 

9 4  



3hysical and other systems. Such analysis has
aow been carried out in several cases, and the

resultsare very encouraging.
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ABSTRACT

We describe a method for algebraic
image restoration capable of treating
astronomical images. For a typical 500
x 500 image, direct algebraic
restoration would require the solution
of a 250,000 x 250,000 linear system.
We use the block iterative approach to
reduce the problem to solving 4900
121x121 linear sytems. We have
implemented the algorithm on the
Goddard Massively Parallel Processor,
which can solve a 121 x 121 system in
approximately 0.06 seconds. Here, we
show examples of our results for
various astronomical images.

Keywords: image restoration,
constrained least-squares, block
iteration

1. INTRODUCTION

The discrete model of linear image
degradation is specified by the
equation:

b = Hx + n (1)

where b and x are the pixel values of
the degraded and original undegraded
images stacked into column vectors, H
is a matrix constructed from the

impulse response (or point spread
function) of the degradation, and n is
an unknown additive noise vector. The
object of restoration is to determine
x, given b and possibly information on
the properties of n. If the point
spread function used to construct H is
not known for the given optical-

detector configuration, it must be
estimated from the blurred image b.
The point spread function is most
easily estimated from point sources
(i.e. stars) on the blurred image.

Since H may be ill-conditioned or
singular, and only the statistical
properties of the noise are known,
there are many solutions, _, for x
which satisfy equation (1). In order to
obtain a reasonable solution for x, it
is necessary to utilize properties of
x. The success of the restoration will
therefore depend on the ability to
model and apply to the restoration,
known or assumed properties of the
desired solution. Properties of x may
consist of its "smoothness" or the
restriction that all values in x be
positive.

Some advantages of algebraic image
restoration are:

1) The point spread function may be
spatially variant;
2) If a constrained least squares
method is used, the applied constraints
may be varied from pixel to pixel to
make maximum use of the known image
properties;
3) Missing or bad pixel values in the
blurred images can be easily handled
wi£hout directly attempting to repair
their values;
4) Noise properties can vary from pixel
to pixel.
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The main disadvantage of algebraic
image restoration is the size of the
linear system. For a 500 x.500 pixel
image, H is a 250,000 x 250,000
matrix. Even with the most powerful
computers available (including the
MPP), a direct solution of the system
would be impossible. In the next
section, we describe a technique -- the
block iterative method, of solving
large linear systems.

2. THE BLOCK ITERATIVE RESTORATION
ALGORITHM

2.1 Block Jacobi Iteration

In most astronomical images, the
point spread function has a much
smaller spatial extent than the image,
so it is appropriate to work on the
image locally. We therefore divide the
image into blocks and restore each
block separately, using values from the
previous iteration as estimates of the
unblurred image values outside the
block. In most instances the blurred
image is a good choice for the starting
or zeroth iteration. This type of
iteration is called block Jacobi or
group Jacobi (Young 1971) iteration and
can be formulated in matrix notation as
follows.

Consider the blurred image, b,
divided into m blocks of equal size Bi,
i = l,m.

B1 B2 ...

B_

Ri- 1 Ri Rio1

..e

Bm-1 Bm

Stack the elements of each block and
place them into a vector:

B1
B= B2.

Ignoring the noise for now, we write
the system as:

HX=B ._

where H is partitioned into blocks:

H_

Hll H12

H21 H22

Hml Hm2

Him

H2m

Hmm

and X contains the restored values,
blocked in the same manner as B. If
the image were divided into blocks of n
pixels each, then the blocks Hi_
would have size n x n. The block
Jacobi method can now be written as:

Hiix_+Z = Bi - Z Hij X_ j (2)
j:I

i=1 .... ,m, and where X_ is the stacked
values for iteration r of block i. If
we define the vector on the right hand
side of equation (2) as BMODi (i.e. the
blurred image less contributions from
outside the block as estimated from the
previous iteration of the undegraded
image), the linear system for block i
can now be written as:

Hii X_+1 : BMODi . (3)

Using the block Jacobi method, we
can reduce the problem to solving m
smaller systems of size n x n of the
form:

H x :b (4)

where H is Hii for block i; x is X_+1
for block i, iteration r+l; and b is
BMODi for block i.
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The solution for block i now
requires the solution of an n x n
linear system. For example, to restore
a i00 x I00 pixel image divided into
m=lO0blocks, each of size, nxn=lOxlO,
the largest system to be solved would
have Hii of size I00 x 100. Since
solutions of linear systems require on
the order of n3 operations, the block

approach compares favorably to the
direct solution of the I0,000 x I0,000

system. For a spatially invariant
point spread function, the problem is
further reduced since Hii will be
identical for all i=l,m.

If a constrained least squares
approach is used to solve the linear
system, the solution will converge to
acceptable results even with a block
size as small as the full-width-at-
half- maximum (FWHM) of the point
spread function. Overlapping the
blocks (accepting only the central
portion for the next iteration) gives
faster convergence or may produce
convergence when no overlap results in
divergence.

2.2 Image Constraints

The block Jacobi method reduces the
restoration to solution of many smaller
linear systems, but it does not address
the ill-conditioned nature of H or the

presence of noise in the blurred
image. An ill-conditioned matrix means
small changes in b, caused by noise,
yield large changes in the solution x =
H-I b. In this section, we show how
constrained solutions can handle these

problems.

In most images, the data vary
smoothly except at isolated points or
edges. For example, an image of a star
field will vary smoothly, except at
locations of individual stars. We can
make use of this image propert_y,
smoothness, by applying a constrained
least squares fit. Specifically, we
minimize a linear operator liQxJt
(i.e. The sum of the squares in Qx),
where Q is a matrix designed to control

smoothness or other characteristics of
the image (Twomey 1963, Philips 1962).
For example, we can control smoothness
in the one dimensional case by
minimizing the second difference in the
solution subject to some other
constraint. If the statistical
properties of the noise are known, we
could minimize the second difference
such that the norm of _JHx-bJl =
llnil; that is to say, the difference
of the blurred image and the solution
reconvolved with the point spread
function should have the same
properties as the noise. In this case
(minimize the second difference), Q
would have the form:

Q _._

0 0

-1 2 -1

-1 2 -1

-1 2 -1

0 0

We use the method of Lagrangian
multipliers, sometimes called the
method of undetermined multipliers, to
make the constrained least-squares
fit. The solution of x is then given
by (Andrews 1977):

x = (H T H + 7 QT Q)-I HT b

where _ is the reciprocal Lagrangian
multiplier. The value of 7 can be
iteratively selected to control the
amount of constraint in the solution.

The solution using Lagrangian
multipliers place no restrictions on
the form of Q. This flexibility allows
the development of a variety of
constraints depending on the known
properties of the image.

Figure 1 shows the application of
this constrained least squares filter
for a test case with different values

of _2. The subscript 2 is used to
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indicate that the constraint is the
minimumsecond difference. Note in
figure I.C-I.E that as 72 increases,
noise in the solution decreases, but
"ringing" at the edges increases. The
ringing results from an inappropriate
constraint at edges: the second
difference should have a large value at
an edge and should not be
minimized. We therefore minimize the
second difference at every location
except the edges by setting the rows of
Q corresponding to the edge locations
to zeros. Figure I.F shows a
restoration of the same test image when
the second difference constraint is not

applied at the edges. A significant
improvement results.

A direct extension of the method to
two dimensional images is to minimize
the Laplacian at each point. The
Laplacian operator has a value at each
pi×el equal to four times the pixel
value minus the values of the four
immediate neighboring pixels. We use
the subscript, l, to indicate the
presence of the Laplacian constraint.
As before, we set rows of the matrix Q
to zero when the Laplacian constraint
is not appropriate (i.e. edges or point
sources).

The constraint need not be
binary: we can vary the amount of
constraint between no constraint to
full constraint for any pixel, simply
by multiplying the appropriate row in Q
by a constant factor running from 0 to
I.

Another useful constraint is to
minimize the difference of x from a
trial solution (i.e. minimize
flp-x!l). The solution using
Lagrangian multipliers is given by
(Twomey 1963):

x = (H T H + 7tl) -1 (H T b + 7t P)

where p is the trial solution, I is the
identity matrix, and 7t is the
reciprocal Lagrangian multiplier. The
subscript, t, will be used to identify
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Figure 1. Effect of Langrangian
multipliers. (A) original image;
(B) image blurred with a Gaussian PSF
(_=2.0 pixels) and noise added (:=1
DN); (C) restoration with 72=0.1;
(D) restoration with 72=0.001;
(E) restoration with 72=0.0001;
(F) restoration with 72=0.1 with
constraint removed at the two edges.



the constraint as minimization of the
solution from a trial solution. Some
possible choices for the trial
solution, p, are a constant value (i.e.
all zeros) or the blurred image
itself. In either case, the
ill-conditioned nature of H can be
avoided and reasonable solutions
obtained.

Multiple image constraints can be
applied simultaneously:

st p)

where a different value of 7 can be
selected for each constraint.

Selection of the reciprocal
Lagragian multipliers is done by trial
and error with the evaluation of 7 by
visual inspection of the results for
various values of 7 or by examination
of the difference of blurred image and
the solution reconvoled with the point
spread function. This difference
should have the same properties as the
noise.

2.3 Missing or Bad Data Values

A problem results when trying to
restore images with missing or bad data
values (i.e. cosmic ray hits or bad CCD
columns). If they are not taken into
account in the restoration, the bad
values will propagate to a larger
portion of the output solution. To some
extent, every point in the solution
depends on all other values in the
blurred image.

One method of handling bad pixels
is to attempt to repair them before
restoration by interpolating from
neighboring values. This approach is
successful only if the repair is
accurate. An alternative method is to
make no attempt at prior repair but
handle them in the restoration
process. In this approach, the
restored image will have more data
values than the blurred image, and the

linear system is underdetermined and,
therefore, singular (i.e. no direct
inverse exists). To ignore bad data
values, we set their corresponding rows
in matrix H to zeros. This method of
implementation (as opposed to removing
row H creating a non-square
underdeterminimed system) allows us to
keep the matrix H square and decrease
the complexity of implementation.
Keeping H square in no way alleviates
the problem of singularity. However,
using the constrained least squares
solution, the problem of singularity
can be alleviated and reasonable
solutions obtained.

3. IMPLEMENTATION OF THE ALGORITHM

The procedure for block iterative
restoration described in section 2 is
actually carried out over three
computers. We use our laboratory VAX
750 with Gould DeAnza image display for
interactive analysis of the blurred and
restored images. We then use a local
area network to copy the blurred image
and point-spread function from the
laboratory computer over to the MPP VAX
780 host computer. We use the latter
machine to prepare input to the MPP,
invoke the MPP, and reconstruct the
output from the MPP into restored
images. Preparation mainly involves
dividing the various images (blurred
image, constraint image, and trial
solution) into blocks of 11xii pixels,
stacking them into vectors, and
formatting them for access by the
FORTRAN driver. Reconstruction of MPP
output is the reverse procedure. The
MPP itself is saved for the computer-
intensive tasks of matrix inversion and
matrix multiplication.

The primary software system that
we use for interactive image analysis
is Interactive Data Language (IDL,
Research Systems Inc., Denver CO). To
generate a single PSF from the
intensity distributions of stars on the
blurred image, we use DAOPHOT by Peter
Stetson at Dominion Astrophysical
Observatory.
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Wehave also installed IDL on the
MPPVAX-host as the user's high-level
language to guide the restoration. The
following IDL statements constitute the
complete set of commandsto restore an
image stored as the variable, BLUR,
with a point-spread function, PSF, and
a block-size of ii and step-size of 7
(i.e. the blocks overlap, and only the
central 7x7 portion of a block is
retained). C is an image controlling
the constraint for each pixel, varying
from 0.0 (no constraint) to 1.0 (full
constraint) for each pixel. The two
reciprocal Lagrangian multipliers, 71
and st, are both set to 0.001. TRIAL is
the trial solution, and X is the first
estimate of the restored image. The
routine, dnext, invokes the next
iteration. The last statement reads in
the output from the MPPstored in the
file, 'OUT.TMP', into the variable, X.

IDL> setblur,BLUR,PSF,11,7
IDL> setgamma,.001, .001
IDL> setcon, C
IDL> settrial, TRIAL

IDL> dnext, X
MPP

IDL> bresult, X

Transfer of data and computations
are carried out by the FORTRANdriver
on the VAX780 and Parallel Pascal and
assembly language on the MPP. The
appendix gives the PP code for matrix
inversion and matrix multiplication
implemented on the MPP.

Typically one iteration takes a
few minutes of CPU-time whenthe
VAX/MPPis not bogged downwith other
users. This time does not include
wait-time for the MPP,overhead in
transferring the data, etc. Since it
is possible to examine an imagewhile
the MPP task invoked by DNEXT is
running, the turn-around time is short
enough that interactive work is a
reasonable proposition. For
restoration, it is essential: the eye
can spot minute but systematic
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imperfections in the restored image as
well as catch glaring errors.

The matrix multiplication
algorithm given above takes 0.03
seconds to multiply two 128x128
matrices, and 0.06 seconds to invert

the same size matrix. A typical image
(512x512 pixels) requires t_
solution of about 5000 linear systems
of size 121x121. Consequently, one
iteration (block size of 11xll pixels,
step size of 7 pixels in both line and
sample directions, spatially varying
constraints) takes about 11
CPU-minutes. On a VAX 11/750, the
identical procedure would take over 3
cpu-days!

4. APPLICATION OF THE ALGORITHM

We now describe the practical
application of the algorithm, by
considering four types of astronomical
images requiring restoration.

Case 1: Clusters of point sources.
Examples are double stars or crowded
star fields, such as globular clusters.
For the brighter sources, specialized
observational techniques, such as
speckle interferometry, are obviously
superior approaches to higher
resolution. For fainter sources in

crowded fields, such as Cepheids in
other galaxies, these techniques may
not be feasible, and deconvolution of
the image data at hand may be
necessary.

Case 2: Point-source juxtaposed to or
superposed on an extended source_ where
the point source is much briqhter than
the underlying extended source. The
extreme example of this case is the
quasar/host-galaxy, in which the
nucleus of the galaxy (the quasar) has
a surface brightness "10 times that of
the underlying galaxy. Even the far
wings of the quasar's point-spread
function swamp the light from the
galaxy, making it difficult to
ascertain what kind of galaxy plays
host to a quasar. Deconvolution of a



quasar image holds the promise of 
separating, in effect, the quasar from 
the galaxy so that the galaxy can be 
examined directly. 
structure, such as spiral arms, 
deconvolution will enhance the 
structural detail. 

If the galaxy has 

Case 3: Point-source juxtaposed to or 
superposed on an extended source, where 
the point-source is much fainter than 
the underlyinq extended source. This 
situation occurs in "deep sky" Images, 
where the peak core brightness of a 
galaxy may be only 1% of the underlying 
sky.  Astronomical seeing conditions or 
some other blurring mechanism may push 
t h e  "nose" of a faint galaxy below the 
detection threshold. Conversely, 
deconvolution of the image may extend 
the detection limit. 

Case 4: An extended source with 
structure. There are numerous examples 
of this case, such as planetary 
atmospheres or galaxies with dust lanes 
or jets. Usually, the structure is too 
arbitrary or complex to deduce the 
detailed physical structure via the 
route o f  convolving the point-spread 
function with some analytical model. 
Direct deconvolution is necessary. 

In the following section, we show 
examples of each of these cases, paying 
particular attention to selection of 
the constraint factors, which as we 
noted earlier, are often a matter of 
judgement. 

5. EXAMPLES 

5.1 Detection and photometry of objects 
i n  a crowded field (image courtesy, T. 
Stecher, GSFC). 

The UV rocket image of galaxy MlOl 
(figure 2, upper left) suffers from a 
motion blur due to instabilities in the 
rocket's pointing system. Most sources 
i n  the image are OB/HII associations, 
which can be considered point sources 
at this resolution. It is o f  
astronomical interest to make 

photometric measurements o f  these HI1 
reg ions . 

Figure 2 (upper right) shows the 
restoration using a constant 
constraint, y7=0.01 and yt=O.Ol, for 
all pixels in the image. The blurred 
image served as the zeroth iteration 
and as the trial solution. Some 
increased resolution is evident. We 
then used a simple thresholding 
technique to locate the HI1 regions in 
the first iteration (upper right image) 
and made a second iteration with the 
constraints removed at the locations o f  
the detected HI1 regions. Also in the 
second iteration, we increased y t  by a 
factor of 10 (for reasons explained in 
the next paragraph). As shown in figure 
2 (lower left) the HI1 regions are 
better resolved, so that fluxes of 
individual HI1 regions can now be 
estimated. 

Figure 2. Ultraviolet Image of M l O l .  
Upper Left Original, Blurred Picture; 
Upper Right: First Iteration (with constant constraints); 
Lower Left: Second Iteration (with variable 
constraints). 
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Figure 3. Computer-Generated Star Field. 
Left: Original, Blurred Image; 
Right: Restored Image. 

We used a computer-generated star 
field (figure 3) to investigate the 
accuracy of detection and photometry 
that can be achieved in a restored 
image. The left image shows a blurred 
star field with a point spread function 
equal to the sum of two Gaussians, one 
with O =  2.0 pixels, the other with U= 
4.0 pixels. The latter has a peak flux 
of 10% of the first. Three hundred 
stars were generated at random 
positions and with random magnitudes. 
Magnitudes ranged from 443 peak counts 
for the dimmest star to 90,750 peak 
counts for the brightest star. In an 
attempt to make the simulation 
realistic, we constructed each star 
individually using an analytical form 
of the point spread function, so that 
star centers fall .at arbitrary 
positions between pixel centers. We 
simulated counting-statistic noise by 
adding Gaussian- distributed random 
numbers scaled by the square root of 
the counts in each pixel. In the first 
iteration, we used constant constraints 
for all pixels, with 71  is set to 
0.001. We experimented with different 
values of Y t  and found that setting y t  
at 0.01 gives the best results. In the 

second iteration (figure 3,  rlght), we 
removed the constraints at the 
locations o f  stars detected on the 
first iteration. 

A comparison between star detection 
in the blurred image and the restored 
image shows no significant improvement 
for the stars with a neighbor Yess than 
3.5 pixels away. The most significant 
improvement in detection is for  the 54 
stars having neighbors between 3.5 to 
5.0 pixels away (i.e. less then the 
full width-half maximum of the point 
spread function, which is approximately 
5 pixels). Only 21 out of 54 stars are 
detected in the blurred image, while 48 
stars are detected in the restored 
image. The average photometric error 
for these stars is 8%. For stars with 
separations greater than 5.0 pixels, 
the average error i s  6%. 

5.2 Deconvo7ution o f  the  quasar, 
2130+099 (11 Zw 136) (courtesy, T. 
Heckman, U. Md.) 

This quasar is a relatively bright 
(mv=14.8), low-redshift (z=0.06) 
quasar. Figure 4 (top) compares the 
cross- sectional profile of the quasar 
with that of a nearby star on the same 
image. The difference between the two 
profiles is the contribution of the 
host galaxy. The aim of the 
restoration is to distinguish the 
host-galaxy from the quasar. 

We found that it is essential to 
center the point-spread function 
exact7y on the quasar (i.e. to a 
hundredth of a pixel); otherwise the 
misalignment causes ringing in the 
restored image. We used the intensity 
distribution of a nearby star to 
represent the point-spread function at 
the location of the quasar. To the 
extent that there is noise in this 
distribution or the PSF is spatially 
variant, the assumed PSF will be in 
error and generate spurious data in the 
restored image. 
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As 71 increases, the noise in the
solution decreases but ringing starts
to set in. We need to impose the
constraint for the host galaxy to avoid
excess noise and to release the quasar
from the Laplacian constraint to avoid
the ringing. Thus, we could set the
constraint image to 1.0 everywhere
except at the location of the quasar
and its immediate neighbors.

The host galaxy is not much brighter
than the background sky, so we let the
trial solution be given by the sky
brightness (254 counts per pixel)
everywhere except for at the quasar,
where we set it to 3.5xi05 (computed as
the quotient of the maximum count-level
in the quasar (21990) divided by the
maximum count-level of the PSF (0.07).

The restored image should have
properties somewhere between the
original (blurred) image and the trial
solution. Thus, we set the first
estimate, X, of the restored images by
calculating:

X= BLUR - T B PSF + T ,

where the middle term at right is the
convolution of the trial image and the
point-spread function.

The cross-sectional profile of the
restored image is shown in figure 4
(bottom). The quasar is now seen for
what it is: a galaxy with an
exceedingly bright nucleus. The
morphological structure of the galaxy
is consistent with its interpretation
as a spiral galaxy.

The contrast level between the
quasar and the host galaxy is more than
1000. Thus, "ringing" at the 1% level
in the restored image would completely
wipe out the galaxy image. This is why
deconvolution of the quasar image is
such a difficult problem. Deconvo-
lution in one dimension has been
carried out before (Bendinelli et al.
1984), but a full 2D deconvolution such
as this requires the MPP.
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Figure 4. Cross-sectional profiles of
the quasar, 2130+099. Top: profile of
quasar (solid line) and nearby star
(dashed line). Bottom: profile of
restored image (solid line) and
Qriginal, blurred image (dashed line).
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5.3 Restoration of  Voyager images of  
Jupiter and Ganymede. (courtesy, E. 
Dan ielson , CalTech) 

The left-hand side of figure 5 shows 
images of Jupiter and Ganymede taken by 
Voyager. A point spread function was 
constructed using an image o f  a star 
taken with Voyager. 
right show the restoration after two 
iterations with a constant constraint 
with ~7 and ~t set to 0.03 (selected by 
visual examination o f  results with 
various values for the reciprocal 
Lagragian multipliers). The improved 
resolution in the images on the right 
will be important for analysis of 
weather patterns on Jupiter and study 
of  planetary detail with images from 
the Hubble Space Telescope. 

The images on the 

Figure 5. Voyager Images of Jupiter and Ganymede. 
Left: Original, Blurred images; 
Right: Restored Images. 
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APPENDIX

A.1 Matrix Inversion

The matrix inversion implemented on
the MPP in Parallel Pascal uses

Gaussian elimination with no pivoting.
The following Parallel Pascal code will
invert the matrix A, size M + 1, where
X, COLK, and ROWK are 128 x 128
floating point arrays. ROWFLAG and
COLFLAG are 128 x 128 boolean arrays.
ROW INDEX and COL-INDEX are 128 x 128
integer arrays which contain the row
index and column index of each element
respectively (indices run from 0 to
127). Initially, X contains the matrix
A to be inverted and upon completion X
will contain B, the inverse of A.
Columns in X will be referred to by
columns in matrix A or B, whichever is
appropriate since both matrices are
stored in X.

1. for K:= 0 to M do
2
3
4
5
6
7
8.
9.
10.

11.

begin
ROWFLAG:= ROW--INDEX = K;
COLFLAG:= COL-INDEX = K;
rowbroad(X,COLK,128,COLFLAG);
where COLFLAG do X:= O;
where COLFLAG and ROWFLAG do X:= 1;
where ROWFLAG do X:= X/COLK;
colbroad(X,ROWK,128,ROWFLAG);

where not ROWFLAG do X:=
X-COLK*ROWK;

end;

Line 1 begins a loop on each column K
in the matrix X. Line 3 sets the
boolean variable ROWFLAG true for

elements in row K and false everywhere
else. Line 4 sets COLFLAG true for
elements in column K. ROWFLAG and
COLFLAG will be used as masks for

subsequent operations. Line 5 takes
the Kth column in matrix A and

propagates each element along its
corresponding row. We no longer need to
retain the Kth column of matrix A.
This column can now be used to store
the Kth column in matrix B, which
initially is set to 1 in row K and zero
elsewhere. This is done by lines 6 and

7 which set column K to all zeros (line
6) and then set bkk to 1 (line 7).
Line 8 divides row K by the value in
position akk. (Remember that line 5
had propagated the value of akk along
the entire row K). Line 9 will take
the Kth row and propagate each element
along its corresponding column. Line 10
is the real work horse and subtracts

aik * row k from every row except k in
A. Since B is also stored in X, the
same operations are automatically
performed on B. This step would have
produced zeros in column k of the
original matrix A in every location
except akk which would have the value
of one. Upon completion of the loop for
all columns, the matrix X will contain
the inverse.

A.2 Matrix Multiplication

The matrix product of two arbitrary
size square matrices A and B can be
written as:

C = (A i O Bi )

where n is the number of rows and
columns in the matrices, and(_)
indicates element by element
multiplication (not matrix
multiplication). The following
Parallel Pascal code gives the
implementation of the algorithm on the
Massively Parallel Processor. A and B
are the input matrices and C will
contain the result. M is the number of
rows and columns minus one. COLFLAG
and ROWFLAG are boolean variables and
AI and BI are matrices used to store

the propagated columns and rows of A
and B. ROW-INDEX and COL-INDEX are
defined in Section A.I.

1. C:= O;
2. for I:= O,M do
3. begin
4. ROWFLAG:= ROW-INDEX = I;
5. COLFLAG:= COL-INDEX = I;
6. rowbroad(A,AI,128,COLFLAG);
7. colbroad(B,BI,128,ROWFLAG);
8. C:= C + AI * BI
9. end;
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ABSTRACT

Balanced correlation method and

the Maximum Entropy Method (MEM)

were implemented to reconstruct a

laboratory x-ray source as imaged

by a Uniformly Redundant Array

(URA) system. Although the MEM

method has important physical

advantages over the balanced

correlation method, it is

computationally time consuming

because of the iterative nature

of its solution. MPP, with its

parallel array structure is
ideal ly sui ted for such

computations. These preliminary
results indicate that it, is

possib]e to use the MEM method in

future coded-aperture experiments

with the help of the MPP.

INTRODUCTION

In the energy range

x-rays, i.e., 30 keV to

there is no focusing

Consequently, in order

the many interesting

which emit radiations

energy range
the sun,

components,

tagged with

must resort, to the use of

collimators or pinholes made from

high density materials. In this

paper, we will focus on the use

of pinholes.

Because a single pinhole is

extremely inefficient, there is a
strong interest in the use of

multiple pinholes to image x-ray

objects [1-12]. However, in most
cases, the images on the detector

formed by the many pinholes

strongly overlap each other
resulting in a detected image

that is not recognizable. A

decoding process must then be

applied to the detected image in
order to recover or reconstruct

the image of the original object.

Such multiple-pinhole masks are

usually referred to as coded

apertures.

In principle, the large
collection efficiency (close to

of hard 50%) of coded apertures offer the

100 keV, possiblility of a greatly

optics, enhanced signal-to-noise ratio
to image while maintaining the high

objects .spatial resolution of a single

in this pinhole. Furthermore, for

such as galaxies, terrestrial applications, coded

nuclear reactor apertures can provide tomographic

and human organs information of the x-ray object.

radioisotopes, one In practice, however, there are
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several difficulties associated
with the use of coded apertures,
especial ly in the imaging of
extended or large x-ray objects.
Because of the strongly

overlapping images on the

detector, the signal in one

location of the reconstructed

image may contain contributions

from all other portions of the

object. This type of signal

cross-talk is object-dependent

and can be present in addition to
s tatistical noise. Such

signal-cross talk can cause

severe contrast degradation in

the reconstructed image of

extended objects. There has been

many studies in recent years on

the performance properties of

various kinds of coded apertures.

One of the most promising type of

coded apertures is the Uniformly

Redundant Array (URA) [I0, Ii] . A

URA is a special kind of

multiple-pinhole mask in which

the number of times a particular

separation occurs between any

pair of pinholes is the same for

all separations. The separations

are the re fore uniformly

redundant. URA has some very

desirable properties ; one of

_hich is that with proper

decoding the signal cross-talk

mentioned above can be eliminated

completely. However, noise
cross-talk still exists. That

is, the statistical noise from

one part of the object can still

contribute to the signal of

another part in the reconstructed

image.

A few years ago, we proposed

another simple alternative: the

Non-Overlapping Redundant Array

(NORA) [121. It consists of a

regular array of pinholes (e.g.,

a hexagonal array) where the

separation between pinholes as

_ell as the separation between

the NORA mask and the detector

can be carefully chosen such that
the images on the detector formed

by the individual pinholes do not

overlap. We have shown that in

NORA, there is neither signal

cross-talk nor noise cross-talk

in the reconstructed image and

the only inherent noise in the

system is that due to counting

statistics. The signal-to-noise

ratio of NORA, assuming Poisson

statistics, is always square-root

of N times that of a

single-pinhole camera, where N is

the total number of pinholes.
This is true even for extended

objects and is the ideal limit

achievable by a multiple-pinhole

system. Another important
feature of NORA is that it is

possible to reconstruct the

extended x-ray object in 3-D by

simple optical correlation. We

have already demonstrated in the

laboratory that the optically

reconstructed image can be viewed

in true 3-D with both horizontal

and vertical parallax. In

addition, NORA should also

provide quantitative tomographic
information through digital

reconstruciton. It is this

latter goal that prompted us to

seek out the capabilities of the

Massively Parallel Processor

(MPP).

DIGITAL DECODING

General

Although it is possible to

reconstruct an image by analog

method when NORA is used as the

coded aperture, digital

reconstruction is mandatory when

the coded aperture, such as URA,

produces overlapping images on
the detector. Furthermore, to

obtain quantitative tomographic
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information, digital computation

is always necessary.

In digital decoding, the large

number of pinholes, pixels and

mathematical operations demand

large amounts of computing time

even wit}, available fast

algorithms. At present, because

we are still investigating

various coding and decoding

methods _hich involve many

repeated trials and iterative

calculations, long computation

times and turn around delays can

be both costly and frustrating.

The MPP, with its parallel array
structure is ideally suited for

this type of computations. In

fact, as we will show below, the

MPP makes our investigations

feasible, while the conventional

mainframe computer, in normal

use, has proven to be inadequate.

Deeoding Methods for URA

Balanced Correlation Method -

Because of the uniformly

redundant and the cyclic nature

of the lIRA, its point spread
function is a delta function with

constant and flat sidelobes.

That is, if the object is a point
source and is detected by an

ideal URA system, the decoded

image by means of an

autocorrelation operation will be

also a point source (delta

function), but with a constant

and uniform background. This

flat de background can be

eliminated by using the balanced

correlation method. In this

method, although the decoding

array has the same pattern as the

coding lIRA array with l's

representing the holes, the

non-holes are represented by -l's

rather than 0's [i0]. However,

in contrast to well-separated

point sources, noise due to

statistical fluctuations in the

background which is not aperture

related can still contribute to

the reconstructed signal as the

object gets large, even with

balanced correlation decoding.

This kind of noise cross- talk

may give rise to artifacts in the

low-contrast background region of

the reconstructed image.

Maximum Entropy Method (MEM) -

Recently many investigators have

become interested in applying the

maximum entropy method (MEM) to

the field of image restoration

including the reconstruction of

coded-aperture images [13-18].
MEM is an iterative method which

maximizes the configurational

entropy while using prior

knowledge such as ehi-squared
(X 2) statistic and total detected

intensity as constraints.
Through iteration, the solution

with the maximum eonfigurationa]

entropy, i.e., with the least

configurational information, is
selected from a set of solutions

all of which satisfy the

chi-squared fit of the actual

data. This solution is

considered as the most likely

estimate of the original object

that is consistent with the

available data.

Following Willingale [15], the
solution has the form:

^-

(I)

where (_ ) is the estimated

intensity of the ith pixel of the

object as seen by the instrument

which maximizes the
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configurational e entropy

is strument efficiency,

i.e. (fL /z i ) is tile true
intensity of the ith pixel of the

object; (B_;) is th_ transpose of

the blurring matrix of the coded

aii)eL'ture; (d_) is the actual data
on the detector; (_K ) is an

estimated data, without noise,

which would be produced on the

detector if the object ^were

correctly represented by (fl ) ;

( _ ) is the variance of the data

(d_) ; (k) and (_t) are Lagrange
multipliers. The function Q

which is being maximized to

produce the solution as

represented by Equation (I) is:

(2)

The first two terms of (2)

comprise the configurational

entropy; the third term with the

Lagrange multiplier ()k) is the
(X _ }, and the fourth term with

Lagrange multiplier (_l) is the
total intensity of t_e object.

For large number of data points

N, (N _ ) _ N. To conserve total

counts, ( z = ).
Noise in the data is accounted

for by the variance ( G'K*).

There are several important
advantages in using (1) as the

decoding solution. Because (I)

is in the exponential form, this

solution is never negative. The

first exponential is a constant

scaling factor which gives the

reconstruction a uniformly

distributed intensity without

features. When the noise in the

data is very high, this

featureless solution (k =0) w_ll

be consistent with the data, (f_)
will be simply proportional to

(z,) by maximum configurational
entropy. When the signal in the

data is high, the featureless

background as given by the first

exponential will be modulated by
the features provided by the

second exponential. The
summation in the second

exponential represents a
cross-correlation between the

blurring function of the coded

aperture and the difference
between the estimated data and

the actual data weighted by its

statistical variance. Since this

reconstruction occurs in the

exponential, iterative algorithms
are needed for its solution.

The relative weighting of entropy
and (X _ ) is controlled by (A).

As mentioned above, when (_) = 0,
(X z ) has no weighting, and the

solution is a uniform

distribution as given by maximum

entropy. When( k ) is increased,

the process reduces (X z ). A

final (A) will be selected when

(X z ) becomes close to N, the

expected value. To help

convergence, we also adopted the
search algorithm of Willingale

[15] by taking weightedaverages
of successive iterations.

EXPERIMENTAL DATA

As an initial test toward digital

decoding using the MPP we have

chosen some data which we had

obtained previously with a URA

coded aperture. The experimental

arrangement is sketched in Figure

i. The URA mask consisted of a

two-cycle mosaic of a basic 15 x

17 m-sequence array. The
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pseudo-random m-sequence pattern

was generated according to the

procedure given by MacWilliams

and Sloane [19]. The pattern was

drilled into a 0.5-mm thick Pb

sheet by a computer-driven lathe.

The holes were 0.3 mm in

diameter; the center-to-center

separation of adjacent holes was

0.6 mm. Thus, the transparency of

this mask was about 10%. For the

imaging detector, we used a

Lixiscope [20] with a digitizing

anode. Briefly, for the present

data, the Lixiscope consisted of

a thin layer of YSiO3(Ge) powder

serving as an x-ray to visible

light converter which was

deposited on the entrance

faceplate of a I:I image

intensifier containing a triple

microchannel-p]ate (MCP) electron

multiplier [21]. The output

electron signals from the triple

MCP are detected by a resistive

anode which can provide both the

position and the amplitude of an

electron pulse. For the simplest

case of the present experiment a

single small 1-125 x-ray source

(28 keV) was used as the x-ray
emitting object. The distance

between the source, the mask and

the Lixiscope were chosen such
that the sensitive area of the

detector recorded at least one

complete basic array of the

magnified shado,_ of the two-cycle

URA mask. The experimental image

of the source, which was

positioned at 31 cm from the

detector, is shown in the upper
left corner of Figure 2. The

display exaggerates the constrast

in the data for this array of 256

x 256 pixels. The average counts

per pixel is about 2. Because

the emitting object is a point

source, the basic URA pattern is
clearly visible witin the

circular active area of the

detector. The digitized version

of this image (Fig. 2) is used

as the data to be decoded by both

the balanced correlation method
and the MEM.

DECODING OF URA IMAGE

The basic implementations of the

balanced correlation method and

the MEM are relatively

straightforward. However, an

important distinction should be

mentioned between this type of

x-ray image processing and that

of the more common visible/IR

image processing. In our case,

one is dealing with extremely low

count rates. Because of this,

the statistical uncertainty of

individual pixels has to be

followed through the decoding

process at the basic level of

computation. The formalism for

the MEM in Equation (1) takes

full account of this

requirement.

The specification of spatial

resolution for the experimental

system displayed in Figure 1
includes not only resolution in

the x-y plane but also in the z

direction. Hence, the digital

decoding of 3-D objects requires
much finer sampling than the

basic pinhole array. This

requirement for high sampling

rates along with the iterative

nature of the MEM are the main

factors which directed us toward
using the MPP.

The decoding process requires at

a minimum sampling rate of 17 x

15 pixels per cycle of the URA.

Because the detected image (Fig.

2", top left) is an array of 256 x

256 pixels, this image is

collapsed to the minimum array of

17 x ]5 through summing as shown

in Figure 2, top right. This
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coded image i s almost
featureless. Tile bottom images

of Figure 2 show the results of

digitaI decoding by the MEM

(left) and tile balanced

rot'relation method (right). Both

methods clearly reconstructs the

point source to tile same degree.
However, these images illustrate

several advantages of the MEM.

First, the MEM does not permit

the physicalls" impossible

negative counts _een in the

background region of the image

reconstructed by the balanced
correlat ion method (bottom

right,) . Secondly, the MEM

produces a much smoother
background (bottom left). This

smoothness helps to minimize the

erroneous interpretat, i on o f
artifacts arising from noise

cross- talk.

As mentioned ear] ier, the

i terative process should be
terminated when (X _) become close

to N, the number of data points.

Letting (X _) t,o reduce further

_i 11 only add artifacts to the

already smooth background. (_,)

controls the relationship between

the entropy portion and the data

portion in Equation (I).

For extended

shapes, the

of tile HEM

[mpo r rant
sou rt:es. In

capabi 1 i ty

background

justifies

expense of

objects with unknown

smoothing capability
becomes even more

than for points

our opinion, this

of suppressing

artifacts amply

the computationa]

the MEM. Timing

experiments on the MPP indicate

that MEN decoding of our x-ray
URA data is indeed feasible. In

general, the MEM requires

approximately ten times more

c:omputational power than the
balanced correlation method

because of the iterations. The
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CPU requirements for the basic

filtering kernel calculation

increases as the factor N for the

MPP, but as the square of N for a

typical mainframe computer, where

N is the total number of pixels

in a decoded data array. For a

future experiment which requires
the reconstruction of five

tomographio planes at ten

iterations per plane with three

values of ( _ ), our estimate is

that decoding would take 1.5

minutes of bIPP/CPU time for the

minimum sampling rate of 17 x 15.

At a very high rate of 170 x 150

pixels per URA cycle, it would
take about 2 hours. A

compromising sampling rate of 51
x 45 would take about 12 minutes.

Even for this compromised level
of decoding, we estimate that the

equivalent processing on a large

un-vectorized mainframe would

take in excess of 24 hours of CPU

time.

CONCLUSIONS

The results of our work to date

have been encouraging. The
continuation of this research

would be greatly enhanced with

the computational power of the

MPP. We need trial-and-error

experience to find the optimum

decoding algorithms as

experimental configurations are

refined, and to determine the

practical tomographic depth

resolution for 3-D x-ray objects.

Our near future plans include the

decoding of x-ray data obtained

with NORA aperture using the MPP.
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ABSTRACT

Satellite-borne Synthetic Aperture
Radars (SAR) sense a_eas of several
thousand square kilometers in fe_J
seconds and transmit phase-history
signal data at the rate of several
tens of megabits per second. For
example, the Seasat SAR acquired data
fo_ a I00 km by I00 km area in about
18 seconds and transmitted at the
rate of 85 Mbits/sec. The Shuttle
Imaging Radar - B (SIR-B) has a
variable swath of 20 to 50 km and
acquired data over I00 kms along
track in about 13 seconds. The
transmission rates used were 30.4 and
45.6 Mbits/sec. The processing of
the phase-history data into images
with pixels representing the radar
reflectances involves co_relation

with the two-dimensional point target
_esponse (i.e., the reference
function) which is typically more
than 1200 samples in each
dimension. Even with the simplifying
assumption of separability of the
reference function, the processing
requires considerable resources --
high-speed I/0, large memory and fast
computation.

Processing systems with conventional
hardware take several hours to
process one Seasat image and about
one hour for a SIR-B image. Bringing
this processing time closer to
acquisition times requires an "end-
to-end" system solution. However,
for the purposes of demonstration, we
have implemented software on the

present MPP configuration (with
conventional I/0 hardware on the VAX
11/780 host computer) for processing
Seasat and SIR-B data. The software

takes advantage of the high
processing speed offered by the MPP,
the large (32 Mbyte) Staging Buffer,
and the high-speed I/0 between the
MPP array unit and the Staging
Buffer. It is found that with
unoptimized Parallel Pascal code, the
processing time on the MPP for a 4096
x 4096 sample subset of signal data
ranges between 18 and 30.2 seconds
depending on options.

INTRODUCTION

Satellite-borne synthetic Aperture
Radars (SAR's) sense a_eas of several

thousand kilometers in a few seconds

and transmit the phase-history signal
data at the rate of several tens of

megabits per second. The first space
bo_ne SAR was on the Seasat which was

launched in June 1978. It acquired

the data needed to generate a lO0 km
by lO0 km image in about 18 seconds

and transmitted at 85 Mbits/sec. The

Shuttle Imaging Radar-B (SIR-B) flown

aboard the Challenger during October
1984 with a selectable incidence

angle capability had a variable swath

of 20 to 50 km and acquired data

needed for an image covering lO0 km
along track in about 13 seconds. The

transmission _ates used were 30.4 and
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45.6 Mbits/sec. The space-borne
radars planned for the future, with
multiple frequencies, polarizations
and incidence angles, will have
similar or higher data rates. The
processing of the phase-hi story data
into images with pixels representing
the radar reflectances involves
correlation with a two-dimensional
point target response (i.e., a
reference function). In the case of
Seasat SAR, this function extends
over 1536 x 4200 samples. In the
case of SIR-B, it is approximately
1200 x 1500 samples. Fortunately, it
is possible to treat this two-
dimensional cmrelation as a
separable problem to a very close
approximation and implement it as two
one-dimensional correlations. Even

so, processing the data in a
reasonable time requires considerable
resources: high-speed input-output,
large memory and fast computation.

Processing algorithms for space-borne
SAR's differ from those for air-borne
SAR's due to the much larger range
walk and range curvature corrections
_equired for the former. Algorithms
for space-borne SAR's have received
considerable attention since 1978.
Descriptions of processing algorithms
can be found in papers by Cumming and
Bennet (1979), Wu (1980) and Wu et al
(1982). The execution of these
algorithms on systems with
conventional hardware (minicomputers,
array processors, computer compatible
tapes and disks) takes several hours
for one Seasat image and about one
hour for a SIR-B image. Bringing
this processing time closer to
acquisition times requires an "end-
to-end" system solution. However,
for the purposes of demonstration, we
have implemented the processing
algorithms on the present
configuration of the Massively
Parallel Processor (MPP) at the
Goddard Space Flight Center (GSFC).
A discussion of the MPP hardware and
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the host configuration system can be
found in companion paper (Fischer,
this volume). This implementation
takes advantage of the high
processing speed of the MPP, the
large (32 Mbyte) Staging Buffer and
the high-speed I/0 between the MPP
array unit and the Staging Buffer.

The purpose of this paper is to
present the MPP implementation of the
SAR processing algorithms and
comments on the timings achieved.



. MPP IMPLEMENTATION OF THE

PROCESSING ALGORITHM

All signal processors must address,
in different ways unique to the
design goals and base processor
hardware capabilities, the same basic
processing functions, and compensate
or correct for conditions such as
range walk and range curvature. The
basic steps in image generation can
be categorized as preparation, signal
processing and postprocessing as
shown below:

Preparation

- Raw data extraction and
reformatting

- Range Reference Function (RRF)
generation

- Doppler parameter estimation for
use in Range Walk Correction (RWC)
and the Azimuth Reference Function
(ARF)

- Frequency domain break-point
calculation to facilitate range
curvature correction

- Generation of trigonometric
constants for use in the Fast
Fourier Transform (FFT) algorithm.

Signal Processing

- Range compression

- Corner Turning (Transposition)

- Azimuth Compression

Image Formation

Postprocessing

- Range Attenuation Compensation
(RAC)

- Geometric Correction (conversion
from slant range to ground range
and rectification to a map

projection).

The raw data extraction and
reformatting consist of converting
the received radar signal data from
the collection medium (High Density
Digital Tape - HDDT) to a medium
acceptable to the processing
system. Since the present
configuration of the MPP and its host
computer does not contain a reader
for HDDT's, it is necessary to start
processing on this system from a
Computer Compatible Tape (CCT) or
disk-file. Seasat and SlR-B signal
data are available from Jet
Propulsion Laboratory (JPL) on CCT's
with records containing packed
data. On these CCT's, Seasat data
contain 4 bits per sample and the
SlR-B data contain 3 to 6 bits per
sample depending on the parameters
selected for a given imaging interval
(data take). For processing, the
signal data records are unpacked into
4 o_ 8 bits per sample before reading
into the staging buffer. The
remaining preparation and signal
processing steps are based on
algorithms described by Wu (1982).
The details of those algorithms are
beyond the scope of this paper.
However, the equations needed to
maintain continuity of presentation
and a discussion of the MPP
implementation are given below. The
post-processing steps of RAC and
geometric correction are not
considered here.

2.1 Preparation

2.1.1 Range Reference Function (RRF)
Generation:

The RRF is the function used for

range compression. It consists of a
dechirp function (filter to match the
transmitted chirp pulse) and a window
function to reduce sidelobes of the
matched filter response. The
function is given by

c(t) = cos 2TT[ (fo + B/2)t -_(t)]
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for 0 < t < T
= 0 elsewhere

where fo = mange offset frequency
(in Hz)

B = bandwidth of the
transmitted pulse (in Hz)

(_ (t) = I/2 Kt 2

K = range frequency modulation
(FM) rate (in Hz/sec)

= BIT

and T = pulsewidth (in seconds)

The values of f^, B and T are shownbelow for Seasa_ and SlR-B

SIR-B SEASAT

Range Offset 7.2 11.3825
Frequency, MHz

Bandwidth, MHz 12.0 19.0

Pulsewidth, 30.4 33.8
microsecs

Frequency domain weighting is used
for sidelobe reduction. Several

options exist for this. Hanning and
Taylor window weighting have been
used by JPL (personal communication,
1983) and Applied Physics Laboratory
(APL) (Raff, 1983) respectively. A
review of windowing and its effects
on processed signals can be found in
Harris (1978);

In our implementation we have used
the Kaiser-Bessel window. This
window provides a better combination
of sidelobe suppression and
compressed pulse width than the
Hanning Window. If the window
function is B(_), then the RRF in the
frequency domain is given by C(_)*B (_)
where C(_)* is the complex conjugate
of the Fourier transform of c(t).

To obtain the RRF in the discrete
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frequency domain, we embed the
samples of c(t) in an N-element long
complex array for some N > T/f_ =
signal sampling frequency), ta_e its
Discrete Fourier Transform (DFT), and
multiply its complex conjugate by a
sampled version of B(_). The choice
of N is a very important sizing
consideration in the processor
design. In our implementation,
N=4096 for the reasons indicated
below in subsection 2.2. In
addition, for SIR-B, a notch filter
is used to suppress the calibration
tone. This is done by zeroing out
the value of C(_)*B(_J) for
corresponding to the frequency of the
calibration tone.

2.1.2 Doppler Parameter Computation:

The Doppler parameters are needed for
computing the RWC and the ARF. Even
though in our implementation the RWC
occurs during range compression (and
hence before azimuth compression), it
is more convenient to define the ARF

first and then discuss the parameters
for RWC.

The ARF is given by (Wu, 1982)

n

hl(X,r,ro) =_" gi(X,ro) _ (r-d i)
i=l

which is the range compressed

response due to a point target

located at (O,ro) where (x,r) are the
(azimuth, range) coordinates at which
h. i_ nv}1_m_f_A n_Iv , _ 4_ fh_
"I .......... ' _i_^''0 ! ,a bm_
azimuth response function evaluated

along a range bin at distance d i from
r o, and is the Dirac delta
function. Further,

gi(x,r o) : ai(x) exp [j_(X,ro)]

where

ai(x ) : Wa(X ) q (d i - rl(x))

_(X,ro) = 4_rl(X)/A



Wa(X) = Antenna weighting function
in azimuth

q(r) = range compressedpoint
target response

rl(x ) = Slant range from the satellite
to the point target

= Wavelength of the transmitted
electromagentic wave

Note that in the above equations, x=O
is the (arbitrary) origin
corresponding to the time whenthe
antenna beamcenter (in azimuth)
passes the point target.

It is convenient to express rl(x)
and _'(x,r n) in terms of the Doppler
frequency And the Doppler rate
induced by the relative motion
between the spacecraft and the
target. It is seen that whenthe
relative acceleration is nearly
constant,

_(t) = _](0) - 2/F(fdt + I/2 fd t2)

where t is used as an independent
variable proportional to x,

_(0) = 4x to/_

fd = - 2 R.V/ (_r o)

fd = -2 (r.A + V2)/(_ro)

and R, V, and A are respectively the
relative displacement, velocity and
acceleration vectors of the target
with respect to the spacecraft at
t=O. (Note that r o is the magnitude
of R).

An implementation consideYation is to
ensure that the numberof range bins
spanned by the range compresseddata
from a given target is kept to a
minimum. This is accomplished by
separating_(t) into two parts:

_(t) : _l(t) + _Y2(t) where

_/l(t) : -2fdot

and_'2(t) = _f]_O)2_ 2[(fd - fdO) t +
I/2 fd t j

where fdo is a "nominal" dopple_
frequency (computed at the center of
the image being processed). The
function _/'l(t) is merged into range
compression processing to perform
range walk correction which is
equivalent to shifting each iso-
azimuth line by a numberof range
bins proportional to fdot.

It is important to determine fd and
fd accurately, since the quality of
azimuth compresseddata is critically
dependent on them. The values of fd
and fd depend on the ephemeris,
attitude, antenna pointing direction
and position of the target (and
therefore on the particula_ range bin
of interest).

Whenthe ephemeris and attitude data
are knownaccuYately (assuming known
antenna pointing direction with
respectto the spacecraft body axes),
fd and fd can be computedfrom them.

Whenthe ephemeris and attitude data
are not knownaccurately, the signal
data themselves are used for
computing fd and fd" The computation
of fd uses a clutter lock
procedure. The fd values are
computedusing an autofocussing
technique.

Clutter lock: The clutter lock
algorithm is based on the principle
that in regions not dominated by
strong point targets, the averaged
magnitude of the azimuth frequency
response matches a shifted apeYture
gain function. The shift in the
aperture gain function required to
match the above frequency response is
the doppler frequency fd: Since fd
is a function of range, It is
necessary to determine this shift for
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several sets of iso-range lines. In
our implementation, group of 16
contiguous iso-range lines aye used
at intervals of 64 lines, starting
from the nearest range-bin. The
procedure used is as follows. The
range offset frequency is first
removed from the data. The data are

transposed for convenient access of
iso-range lines. Sets of 16 lines
(4096 samples each) are then Fourier
transformed and the averages of the
Discrete Fourie_ Transform (DFT)
magnitudes are found. This averaged
DFT magnitude array is correlated
with the aperture gain function
f(a) given by

f(a) = (sin a/a)2where

a = 27Tk/4096 for k = -2047,
-2046, .... , 2048, k#O

and f(O)=l.

Now, fd is given by

fd = PRF (I + K/4096)

where PRF = Pulse Repetition
Frequency

and K = sample number at which
the correlation peak
occurred (ranging from
-2047 to 2048).

After fd is computed for each
selected set of 16 iso-range lines it
is assigned to the mid-range value of
that set. Then, a least-squares fit
is performed using the fd values for
all the selected sets to obtain fd as
a function of range r:

fd (r) = fdo + mr , where m is the
slope determined by the fit

The mid-range value of fd is used for
range-walk correction during the
range compression process.

Autofocus: The autofocus algorithm
is based on the principle that if the
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fd value is correct, the azimuth
compression will result in the best
focused point target response. Thus,
if the fa value is correct, each look
of multiple-look processed azimuth
compressed data will place image-
features at the same location.

However, a small error in fd will
result in shifts among the Images
from the multiple looks. By
determining the shifts, the

corrections to fd can be computed.
For this method to succeed, it is
necessary to have an initial estimate
of fd which is close enough to the
correct value to result in some

recognizable features in the multi-
look processed images. The initial
f values are estimated using thed
ephemerls and attitude data. In our
implementation, the two looks closest
to the center of the azimuth
reference function are used to
produce two images. These two images
are then correlated to determine the
shift between them. The shift is

used to correct fd and the process is
repeated. This procedure is used on
several sections of the image at

various range values and fd is
computed as a linear function of
range through a least squares fit.

2.1.3. Frequency Domain Break-Point
Calculation:

The purpose of this preparatory step
is to precompute some of the
parameters needed for manipulating
frequency domain data during azimuth
compression. Wu (1982) has shown
that the Fourier transform of the
desired signal after azimuth
compression can be written as

n

.(_L(u,r o) =_ IS (u,d i + r o)
i=l

A(u,ro)] H(u,r o)

where

u is the azimuth frequency variable

ro is the range bin of interest



n is the number of range bins over
which the range compressed
Point target response is spread

d i is the distance from r o to tile i th
range bin used in range
curvature correction

S is the Fourier transform of the

range compressed signal and

A# and H are, respectively,t complex conjugates of the Fourier
transforms of a i (x) and
exp[j_I/(x,ro)] aefined in subsection
2.1.2.

Two commonly used approaches to
approximating the summation in the
above equation are nearest neighbor
assignment and cubic interpolation.
Conceptually, these approximations
are treated as follows.

Let i^ be the (possibly fractional)

valueUof i for which A i (u,r n) is a
maximum. Note that i Is a f6nction

of (U,ro). Let I be the integer
nearest to i n . Let I o be the largest
integer less-than or equal to i o.
Then, the nearest neighbor assignment

is equivalent to replacing Ai (u,r o)
by _ (i-I). Cubic interpolation is
performed using the samples of S
corresponding to i in the range Io-I
through In+2. (That is, the Ai have
suitable "weight" values for i in
this range and are zero elsewhere).

Since the range curvature depends
only on fd, the values of i o for the
various u can be found from fd and
fa. Therefore, for each set of fd,

f_ indicated in the avoce subsection,
we can precompute i o as a function of
u. For nearest neighbor assignment,
which is our present implementation,
it is most convenient to store I in
terms of the values of u at which it
changes. These are called the
frequency domain break-points. These
break-points are computed during this
preparatory step and are used for
generating the "masks" required for

range curvature correction (see
subsection 2.2.3).

2.2 SIGNAL PROCESSING

The signal processing primarily
involves the computation of
correlations between the recorded

signal and the reference functions in
the range and azimuth directions.
These correlations are performed most
efficiently as multiplications of the
functions after a transformation to

the frequency domain, followed by an
inverse transformation to return to
the time domain. Since this is the
most computationally intensive
portion of the processing, it is
important to use a Fast Fourier
Transform (FFT) algorithm which takes
full advantage of the capabilities of
the MPP.

The FFT design has been chosen to
maximize its efficiency subject to
the MPP hardware constraints such as

the 1024-bit array memory per
processing element (PE) and the 32
Mbyte staging buffer capacity. One
of the design constraints is that it
should be possible to transpose the
range compressed data within the 32
Mbyte staging buffer prior to azimuth
compression so that the IOw-speed
data transfers between the MPP and
the disk (or tape) devices are
minimized. This requires that the
signal processing be carried out on
blocks of raw data with MN samples
where M and N, the numbers of samples
in the range and azimuth directions,
respectively are chosen such that the
results of range compression for the
entire block can be held in the

staging buffer. To minimize the
computation time, the trigonometric
constants needed for the FFT are
precomputed and stored in the array
memory. To eliminate the need for
reloading trigonometric constants
between range and azimuth
compression, it is necessary to
choose M = N. Further, the number of
correct output values produced after
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correlation processing is N - RFL+ 1
where the RFLis the numberof
samples in the reference function.
Therefore, it is desirable to use as
large a value of N as possible.
These considerations lead to the
selection of N = 4096.

In general, algorithms on the MPPare
most efficient when all the PE's are
kept busy performing "useful work"
and the data transfers amongPE's are
minimized. (Note that the data
transfer time can be comparable to
computation time. Shifting a K-bit
operand by x PE's requires (x+2)K
clock cycles, while the addition of
two K-bit operands requires 3K
cycles). In the case of the FFT, the
maximumefficiency is achieved when
all the PE's are performing complex
multiplications or additions and
there is no data shuffling amongthe
PE's. This _equires that all of the
data in an array to be transformed be
resident in the memoryof a PE. (In
that case, 16,384 FFT's could be
performed simultaneously). However,
due to the limitation of 1024 bits of
memoryper PE, it is necessary to
distribute each of the arrays to be
transformed over several PE's. If
each of the arrays to be transformed
has N samples and is distributed over
a rectangular subset of PE's of
dimensions A x B, it is necessary to
store C = N/(A x B) samples per PE.
It is easy to see that the numberof
shift operations needed per FFT is of
the orde_ of (A + B). Thus the data
transfers are minimized if A + B is
minimized and C is as large as
possible. The value of C is limited
by the available array memory. For a
given C, the value of A + B is
minimized by selecting A = B. For
the case N = 4096, A = B = 32 and C =
4 are chosen to provide the optimum
data arrangement. This allows 16
FFT's to be performed simultaneously
on the MPP.

The MPPis most efficient when
performing integer arithmetic; this
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speed decreases as the length of the
operands increases. Another
consideration is that the transfer
rate of data between the MPPand the
host system is severely limited by
the available hardware configuration.
Thus in order to minimize the
computation and transfer times the
size of the operands should be chosen
as small as possible while preserving
the accuracy of the computations. For
the SARprocessing, the raw signal
input is 3 to 6 bits per sample, and
the processed output image is
generally desired as 8 bits per
pixel. Experimentation has shown
that 16-bit integer calculations are
sufficient to preserve full accuracy
at the intermediate stages of
computati on.

2.2.1 Range Compression

The range compression is performed by
reading the raw signal data in groups
of 16 lines, performing the FFT,
multiplying by the precomputed RRF
performing range walk correction by
multiplying by the walk reference
function, performing the inverse FFT,
basebanding the data, and outputting
the resultant complex data.

The range walk correction is designed
to minimize the number of range bins
over which a point target's response
extends during azimuth processing.
The walk reference function is

computed as described in section

2.1.2, using the value of _d at the
middlp rangp valup nf _h_ lm_na
determined by the clutterlock

processing. The multiplication by the
walk reference function results in a

shift of each successive range line

by a (possibly fractional) number of

range bins.

In most signal processors the range

offset frequency fo is eliminated in
a basebanding operation that shifts
frequency domain data down in

frequency by fo" On the MPP,
basebanding is accomplished after



restoring the data to the time domain
by multiplying the data by a complex
operand to shift it in frequency.
This method, requiring a single
complex multiplication per sample, is
more efficient than the time
consuming data shuffling that would
be necessary to shift the data in the
frequency domain.

The resulting data are subsampledto
obtain 2048 complex samples per
line. Then, all 16 lines of range
compresseddata are reduced to 16-
bits per sample (8-bits real and 8-
bits imaginary) and transferred to
the staging buffer simultaneously.

2.2.2 Corner Turning

The corner turning is performed by
writing the 4096 x 2048 complex 8-bit
data to the MPP staging buffer, and
reading the data into the array
memory in transposed order. The
transposition is performed under the
direction of a Stager Control Block
(SCB) file, constructed to direct the
staging buffer to use row-major order
for input and column-major order for
output of the 2-dimensional array.
The staging buffer has a capacity of
32 Mbytes and a theoretical I/0 rate
of 80 Mbytes/sec (overhead
considerations which reduce the
achievable rate are discussed in
section 3). Previously the staging
buffer had a 2 Mbyte capacity and an
I/0 rate of 20 Mbytes/sec. This
smaller capacity made it necessary to
perform the corner turning by writing
partially transposed data to a disk
file, _ead the data back to the
staging buffer using random access
I/0, and complete the transposition
in the staging buffer. The disk I/0
has a theoretical rate of 1.2
Mbytes/sec, while the achievable rate
depends largely on the system load at
the time of processing. Thus at least
a 67 fold increase in speed is
obtainable by using the current
staging buffer configuration.
Further, at present, the data

transfers between the staging buffe_
and host files require intervention
of the host. If the transfers
between the array unit and the
staging buffer can be performed
without host intervention the speed
increase becomes much greater.

2.2.3 Azimuth Compression

The azimuth compression is performed
on the MPP on a group of data
referred to as an Azimuth Processing
Blocks (APB's), consisting of 32
lines by 4096 azimuth values per line
of range compressed data. The azimuth
compression produces (4097-ARFL)
"correct" data values per line, where
ARFL is the length of the Azimuth
Reference Function. Therefore, for
single-look processing the APBs are
overlapped by (ARFL-I) azimuth values
to process all azimuth values.

For each APB an ARF is computed in
terms of fd and fd determined by the
clutterlocR and autofocus algorithms
as discussed in section 2.1.2. After

the ARF is computed its Fourier
t_ansform is computed and stored.

The range compressed data are read 16
lines (range bins) at a time and the
Fourier transformed using the same
data arrangement as was used during
range compression. Prior to
multiplication by the Fourier
transformed ARF's it is necessary to
perform range curvature correction to
assure that all the data
corresponding to a given slant range
occur in the same range bin. To
accomplish this the data are first
rearranged so that the data from the
16 range bins corresponding to a
given azimuth occur in the same PE.
The frequency domain break-points
computed as in section 2.1.3 are used
to determine the number of range bins
by which each sample is to be
shifted. The shifts (movement of
data within each PE by a known
integral number of range bins) are
accomplished using masked assignment

129



operations. The data aye then
rearranged in the "FFT order",
multiplied by the Fourier transforms
of the ARF's and inverse transformed.

2.2.4 Image Formation

The inverse transformed data above
are complex. The magnitudes of these
data constitute the fully correlated
image result. The image values so
obtained are accumulated in the
staging buffer and written to disk as
blocks of (2049 - RRFL/2) lines with
(4097 - ARFL) pixels per line where
RRFL and ARFL are the lengths of the
range and azimuth reference
functions, respectively.

3. RESULTS AND CONCLUSION

An example of a SIR-B image generated
using the above MPP implementation is
shown in figure I. This image covers
a region surrounding Mount Shasta,
California. It represents the
results of processing 4 blocks of
signal data, each with 4096 x 4096
samples. The blocks are overlapped
by ARFL = 2031 samples in the azimuth
direction. The signal data are first
singlelook processed to form image
data as discussed above in section
2.2. Successive pixels in the
azimuth direction are then averaged
in groups of four to reduce speckle
and approximately match the slant
range pixel size.

The times required for processing one
4096 x 4096 block are shown in the

table below. Processing and I/0
times are reported separately. For
the processing, the times also
include the speed improvement
resulting from eliminating the
scaling from the FFT routine, and the
use of a new, more efficient code
generator.

The I/0 times compare the previous
transposition requiring the use of an
intermediate disk file to the method

that performs the transposition in
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the staging buffer. In our first
Implementation, the intermediate file
consisted of 16-bit data. However,
t was determined experimentally that

there was no significant loss of
mage quality if only the 8 most

significant bits each of the real and
maginary parts of the range

compressed data were written to the
intermediate file. We have use the
8-bit intermediate data for the
Implementation with transposition in
the staging buffer.

The processing times for the range
and azimuth compression reflect the
speed advantage obtainable from the
MPP, while it can be seen that the
limitation of the system is in the
I/0 transfer rates. There are two
major limitations to the current
system that are reflected in the
reported rates. The first is that
data transfers from disk files are

limited to approximately 1.2
Mbytes/sec. Tile second is that the
I/0 transfers require the
intervention of the host computer,
and the overhead involved in this

intervention severely limits the rate
of transfer. A transfer rate of 80

Mbytes/sec. is theoretically
attainable for moving data between
the array unit and the staging
buffer. In the table are reported
the estimated times for a
conservative 20 Mbyte/sec. rate.
Note that the use of the staging
buffer reduces the transposition time
to 1.4 seconds, which is almost
negll_,u,=.

The processing times shown can be
improved by optimization of the code.
The FFT includes a routine that

checks the range of data values at
intermediate stages of the
computation and "clips" values that
would exceed a 16-bit representation.
This routine was necessary because
the existing arithmetic routines
produce large negative values in the
case of overflow. Overflow does not
normally occur unless there is noise
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introduced while transferring data
into the array unit. To avoid tile
effects of noise, the data values are
rescaled at the intermediate stages
of computation to provide maximum
dynamic range, in effect increasing
the signal-to-noise ratio. Given
"well-behaved" data, these extra
routines (which degrade the
performance) aye unnecessary. Each
FFT requires 3.0 msecs, while without
the clipping routine the time is
reduced to 1.25 msecs. Further
improvements in performance can be
expected by optimizing the assembly
code generated from the MPP Pascal
source code.

4. Raff, B. E. and Kerr, J. 0., The
Johns Hopkins University Applied
Physics Laboratory SAR Processor,
IEEE EASCON, 16th Annual Electronics
and Aerospace Meeting, 1983.

5. Wu, C., A Digital Fast
Correlation Approach to Produce
Seasat SAR Imagery, Proceedings of
the IEEE International Radar
Conference, 1980.

6. Wu, C. et al, Modelling and a
Correlation Algorithm for Spaceborne
Signals, IEEE Transactions on
Aerospace and Electronic Systems,
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AN APPLICATION OF THE MPP TO THE INTERACTIVE

MANIPULATION OF STEREO IMAGES OF DIGITAL TERRAIN

MODELS.
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ABSTRACT

We develop MPP algorithms for the

interactive manipulation of flat

shaded digital terrain models defined

over grids. The emphasis is on real

time manipulation of stereo images.

Standard graphics transformations are

applied to a 128 x 128 grid of

elevations followed by shading and a

perspective projection to produce the

right eye image. The surface is then

rendered using a simple painter's

algorithm for hidden surface removal.

The left eye image is produced by

rotating the surface 6 degrees about

the viewer's y axis followed by a

perspective projection and rendering

of the image as described above. The

left and right eye images are then

presented on a graphics device using

standard stereo technology.

Performance evaluations and

comparisons are presented.

Keywords: MPP, graphics, stereo

images, parallel algorithms, terrain

models.

INTRODUCTION

Grid based digital terrain models

contain an m x n rectangular grid of

points (xi,Yj), 1 _ i _ m, 1 _ j S n,

which are longitude and laltitude

values on the earth's surface. Each

grid point has an associated value zij

which is the elevation above sea level

at the point (xi,Yj). The data is

often collected by cartographers from

stereo photographs of the earth's

surface using a stereoplotter. The

cartographer uses input devices on the

stereoplotter to manipulate a virtual

3D cursor. The operator drives the

cursor across the surface of the earth

while the stereo plotter produces

digital elevations.

Although thousands of poinLs may be

collected on a given surface, these

points are massaged to produce a grid

of equally spaced terrain data. In a

separate operation, data are collected

describing features such as rivers,

lakes,bridges, etc. The cartographers

then search for anomalies or

inconsistencies in the two sets of

data. Anomalies might include rivers

which run uphill, lakes which do not

sit on the surface of the earth, etc.

The Defense Mapping Agency believes

that anomalies in the data can be more

quickly and easily located if

cartographers are able to view and

interact with these digital data using

a three dimensional image .

Interaction with the data in real time

and the ability to shade the image

require a high speed computer graphics

device which can produce stereo images

of the data at the refresh rate of the

crt or projection mechanism. The

technology used to produce and view

such a three dimensional image is

described in [i]. The left and right

eye images share the odd and even scan

lines of the crt, if interlaced

refresh is used, while the two images

are double buffered in graphics memory
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and rendered alternately in the case

of noninterlaced refresh. In both

cases, a crt with a rapidly decaying

phosphor is required to preclude

ghosting. Polarization in the form of

liquid crystal or plzt shutters is

used to block the left eye when the

right eye image is rendered and vice

versa. The refresh rate must be

sufficiently fast to eliminate

flicker, usually at least 30 Hz

interlaced or 60 Hz noninterlaced. In

this paper the left and right eye

images appear side by side. The stereo

effect can be obtained by 'free

viewing' the image. Free viewing

requires the viewer to gently cross

the eyes so that the two images merge

to form the three dimensional image in

the center. An alternative is to place

a piece of paper perpendicular to the

photograph so that the left eye sees

only the left image and the right eye

sees only the right image. Assuming a

left handed coordinate system where x

and y axes are centered on the viewing

screen, the left eye view is formed by

rotating the right eye view 6 degrees

about the y axis. The two images are

then drawn or rendered on the screen.

The points P = { (xi,Yj, zij)} describe

a discrete bivariate functional

surface which can be rendered on a

computer graphics device using

standard polygon based graphics

primitives. We discuss these

primitives and their implementation

in the next two sections. In later

sections we present some examples and

analyze the performace of the MPP and

compare it to a VAX 11/780. Finally we

offer directions for future research.

GRAPHICS PRIMITIVES

We assume m=n=128 and that the points

in P are assigned to processors in the

obvious way: processor Pij contains

the grid point (xi,Y j, zij). Larger

grids must be subdivided into 128x128

sections. The terrain surface is

represented by triangles as shown in

figure I. Triangles have the

advantage that they are always planar

which simplifies rendering.

zij!
p-
z!

Figure i. Terrain Model

The standard graphics operations of

rotation, translation, scaling and

perspective projection can be computed

by matrix multiplications. Each point

in P is multiplied by the

transformation matrix to place the

resulting terrain image in the proper

position for viewing. The triangles

comprising the terrain are then

projected onto the viewing screen and

filled with a shading intensity in an

order which assures that triangles

which are hidden from the viewer are

eliminated. The latter process is

called 'hidden surface elimination'

[2] .

Clipping involves presenting only that

portion of the image that is visible

to the user through his chosen viewing

window, i.e. if the resulting image is

too large to fit on the screen some of

the image must be discarded before

rendering . This process is

computationally expensive on serial

machines and we have chosen to ignore

it here. We discuss it further in the

final section.
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The standard algorithms for hidden

surface elimination are notoriously

computation intensive on serial

machines. They are designed to treat

arbitrarily complex (and non-convex)

objects which may intersect

themselves, have holes, etc. However,

the problem of hidden surface

elimination can be solved easily for a

digital terrain. The surface data can

be divided into eight parts. The

algorithm determines the octet number

in which the chosen eye point lies

based on the distances calculated to

the four corners of the surface data.

In any one octet the farthest point

and the second farthest point are

always fixed. (Figure 2).

c0 5
0J:f-/ /c

(-I,1,

I-!;1,0) (I,-1,0)

Figure 2. Rendering Order

The rendering of the terrain proceeds

from the farthest to the second

farthest corner. The technique is a

painter ' s algorithm without a

topological or geometric sort. For

example, if the coordinates of the

four corners of a rectangular grid

centered at the origin are (I,i,0),

(-i,i,0), (-i,-i,0), and (i,-1,0) the

distances to these four corners from

the eyepoint located at (4,5,6) are

25, 41, 61 and 45 respectively. The

rendering therefore proceeds form

corner 3 to corner 4. (Figure 2.).

This technique is very effective in

rendering digital terrains defined

over rectangular grids. The approach

is possible because a terrain can be

rendered from back to front relative

to the eyepoint and hidden surfaces

will auomatically be removed. This

algorithm makes" possible real time

manipulation of the stereo images

because no sorting is required in the

process.

With the emphasis on real time

manipulation of stereo images, we have

chosen to use the constant or flat

shading model. In flat shading we

assign the same intensity value to

each pixel enclosed by a projected

polygon. More sophisticated smooth

shading techniques calculate separate

intensities for each pixel within the

polygon by interpolating the

intensities across the edges of

abutting polygons [3,4,5,6].

To compute the intensity or shading

value to be assigned to a triangle

two vectors are required: a vector of

unit length perpendicular to the

surface of the triangle called the

unit normal and a unit vector from the

centroid of the triangle to the light

source (which we shall term the light

vector) (Figure 3). The sun is the

single light source.

I

"

Figure 3. Flat Shading

The normal to the triangle is the

cross product of any two sides of the

triangle. The dot product of the

normal and the light vector for the

triangle is the cosine of the angle
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between the two and is used to

determine the shade value used for

illuminating the triangle. The

distance to the light source is

ignored. An intensity value

representing ambient light is included

so that all triangles are visible

relative to the background color. We

have not included a spectral

reflection component since terrain

images are not glossy.

Flat shading may result in a

phenomenon called Mach banding which

is the result of an anomaly in the

human visual system which causes

exaggeration of intensity change at

any edge where there is a

discontinuity in the slope of the

intensity function [7]. This

phenomenon is apparent in figures 4

and 5 in C0]0r Plate I. It can be

eliminated by resorting to smooth

shading algorithms.

THE ALGORITHM

The algorithm which produces a stereo

image is divided in two Sections. The

first Section which executes on the

MPP performs the necessary

computations for correct orientation

of the terrain surface. The second

Section renders the terrain on the

graphics device. All MPP related

activities made use of references

[8-14].

Section One contains as a subpart a

preprocessing Fortran driver to

produce input to a parallel Pascal

routine. The Fortran driver reads or

generates the digital terrain data and

queries the user for the location of

the eye point, and the location of the

sun. The driver then constructs the

necessary homogeneous transformation

matrix which involves a series of

matrix multiplications. The purpose of

these transformations is to rotate the

object so that the eyepoint lies on
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the Z axis. The scalar arrays for the

eye point, light source, and rotation

matrix are transferred to the MPP for

computation of the stereo pair in Part

2 of Section One.

To compute the shade values to be

assigned to each of the triangles, the

normal to the surface of every

triangle and the light vector are

computed. These shade values are also

output to the display part of the

program. The total number of triangles

generated for a 128 X 128 array is

32258 (127 x 127 x2). On the VAX the

above computation must be done

serially for each triangle. On the

MPP, the computation for each triangle

is assigned to one processing element.

Shade values for all triangles can

therefore be computed in two passes

through the shading code on the MPP.

Each point in the array is now

transformed in parallel by

postmultiplcation with the

transformation matrix. To perform the

perspective transformation, each point

is divided by the sum of its Z

coordinate and the viewing distance.

The final step in the computation is

to convert the grid points to screen

coordinates and to render the terrain

on a graphics device.

EXAMPLES

Six stereo pairs are presented in

figures 4 through 9 in the Color Plate'
I, All surfaces have been

evaluated over a grid of 128 x 128

equally spaced points on [-I,-I] x

[I,I]. In each case 256 intensity

values have been used in the shading

model.

Figure 4 on Color Plate I is a

stereo pair of f(x, y) = exp [-(Ixl +

lyl ) / 4] cos ( Ix[ + lyl ) • The

image was chosen to demonstrate the

hidden surface elimination procedure.



Mach banding is evident in this and

the following figure. !Figure 5 in
Color Plate [ is the function of

fiQure 4 with the variable x

removed. IFigure 6 in Color Plate I
is the usual cowboy hat function

f(x,y) = exp ( -(x 2 + y2 )) cos (x 2 +

y2 ) while Fiqure 7 in Color Plate

I is the function f(x,y) = exp (-Ixyl

) cos ( x 2 + y2 ). Both surfaces

appear to be smooth shaded.

Figures 8 and 9 in Color Plate I

are digital terrain mo(lels

representing a region in Seattle,

Washington. The elevation values have

been scaled up to exaggerate the depth

in the image.

PERFORMANCE

The above terrain rendering algorithm

has been implemented on the MPP at

Goddard and on a VAX 11/780 at North

Carolina State University. In one test

case to compute the altitudes, perform

the transformations and calculate the

shade values for one of the two images

the VAX used 105 seconds of CPU time.

To display the data points on half of

the screen on a Lexidata 90 graphics

system in high resolution (1024 x

1280) requires 150 seconds of CPU

time. This is the time to send the

screen coordinates of the triangle

vertices that form the image, their

shade values and to render the image

on the screen. We were not able to

obtain performace statistics on the

MPP because of a hardware error

(failure to open Virtual Channel).

However, performance estimates based

on a i00 nanosecond time step for each

processor, yielding a conservative

overall execution rate of 200 Mflops

for the PE's, shows that the

computation of the transformations

will require 0.02 seconds. Hence,

computational aspects of real time

stereo images indicate that it is

possible to compute 50 stereo images

per second for a 128 x 128 array on

the MPP. The computation must be

supported by appropriate high

bandwidth I/O hardware and a fast

rendering graphics device. The

bandwidth required for rendering at a

60 frame per second rate using

floating point data, is approximately

160 megabytes per second. Although the

MPP-VAX system I/O rate is less than

this, the MPP array interface is

capable of this rate.

Computation rates and I/O rates can be

reduced by using fixed point data with

word lengths shorter than 32 bits.

This is reasonable for the present

problem because terrain data values

can be represented in fixed point

format. The highest peak on the

surface of the earth is less than

32000 feet high. One foot resolution

is usually sufficent which means that

a 16 bit integer can be used for the

elevation (zij) values. For a 128 X

128 array the longitude and latitude

values can be represented as 8 bit

integers. The MPP allows for these

different data representations to

exploit its computation, storage and

I/O capabilities efficiently.

CONCLUSIONS AND FURTHER RESEARCH

Our initial studies show that grid

based digital terrain models can be

mapped in a natural way to the SIMD

architecture of the MPP. The

parallelism of the machine can be

exploited in computing the necessary

graphics transformations required to

render stereo images of a terrain in

real time on a high speed graphics

device .

Development of the algorithm was

inhibited by the memory limitations of

the Processing Elements. The algorithm

had to be divided into smaller

segments to avoid overwriting on the

9_



memory bit planes used by the MPP.

Additional memory will be required to

handle larger grids.

Rapid identification of data anomalies

may require closer inspection of parts

of the terrain surface and hence

zooming or scaling up of the image

will be necessary. This may require

clipping so the image fits on the

viewing screen. Image enlargement may

also require a pixel oriented smooth

shading algorithm [3]. Shadowing can

enhance visual realism and also aid in

locating data anomalies. However, most

shadowing algorithms on sequential

machines are notoriously slow.

Algorithms have been proposed which

are adaptations of hidden surface

techniques [15]. We intend to

investigate these and other algorithms

for possible implementation on the

MPP.

REFERENCES

I. L.F.Hodges and D.F.McAllister,

"Stereo and Alternating Pair

Techniques for Display of Computer

Generated Images", IEEE CG&A, Vol.

5, No.9, Sept.1985, pp 38-45.

2. I.E.Sutherland, R.F.Sproull and

R.A.Schumacker,"A characterization

of Ten Hidden-Surface Algorithms",

Computing Surveys, Vol. 6, No.l,

March 1974, pp. 1-55.

3. H. Gouraud, "Continuous Shading of

Curved Surfaces",IEEE Transactions

on Computers, VoI.C-20, No.6, June

1971, pp. 623-628.

4. Phong Bui-Tong,"Illumination for

Computer Generated Pictures",

Communications of the ACM, Vol.18,

No. 6, June 1975, pp. 311-317.

5. K.E.Torrance and E.M.Sparrow,

"Polarization, Direction

140

Distribution, and Off-Specular

Peak Phenomena in Light Reflected

from Roughened Surfaces", J.

Optical Society of America, vol.

56, No. 7, July 1966, pp. 916-925.

6. K.E. Torrance and E.M. Sparrow,

"Theory for Off Specular

Reflection from Roughened

Surfaces", J. Optical Society of

America, vol. 57, No. 9, Sept.

1967, pp.l105-1114.

7. F. Ratliff, Mach Bands:

Quantitative Studies on Neural

Networks in the Retina,Holden-Day,

San Francisco, 1965.

8. General Description of the MPP,

Goodyear Aerospace Corporation,

GER 17140, April 1983.

9. MPP User's Guide, Edited by Jim

Fischer, Science Applications

Research, Lantham, MD., Jan. 1986.

10.Introduction to the MPP Host

Run-Time System (MPPHRTS), Version

3.01, January 1986.

ll.Parallel Pascal Language Reference

Manual,MUD210, NASA, Goddard Space

Flight Center.

12.Parallel Pascal User's Guide,

MUD220, NASA, Goddard Space Flight

13.MPP Pascal Callable Procedure

Library, J. Abeles, Science

Applications Research, Lantham,

MD., January 1986.

14.Control and Debug (CAD) User's

Manual, Goodyear Aerospace April

1983.

15.J.D.Foley & A.VanDam, Fundamentals

of Interactive Computer Graphics,

Addison Wesley, July 1984.



N87-26547
DEVELOPMENT OF A STEREO ANALYSIS ALGORITHM FOR GENERATING
TOPOGRAPHIC NAPS USING INTERACTIVE TECHNIQUES ON THE HPP

James P. Strong
Space Data and Computing Division
NASA Goddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

The analysis of stereo images to
determine depth or elevation is an
example of the general problem of the
detection of local movement or

distortion when comparing two
images. Examples of tasks that
require solutions to this problem
include topographical map generation,
object tracking, autonomous vehicular
guidance, and robotic vision
systems. The key part of the problem
is the matching of corresponding areas
in the two images. While the human
vision system is very good at this
task, automated techniques have proven
to be computationally expensive and
not practical with standard
computers. The thrust of the work
presented in this paper is the
development of a local area matching
algorithm on the Massively Parallel
Processor (MPP). It is an iterative
technique that first matches coarse or
low resolution areas and at each
iteration performs matches of higher
resolution. This is similar to what
has been demonstrated to happen in
human visual systems by Mart and
Poggio, (1971). Results so far show
that when good matches are possible in
the two images, the MPP algorithm
matches corresponding areas as well as
a human observer. To aid in
developing this algorithm, a control
or shell program has been developed
for the MPP that allows interactive
experimentation with various
parameters and procedures to be used
in the matching process. (This would
not be possible without the high speed
of the MPP). With the system, optimal
techniques can be developed for
different types of matching problems.

INTRODUCTION

During October 1984, the Space Shuttle
Challenger was flown with a Shuttle
Imaging Radar instrument (SIR-B). One
of the experiments during this mission
was to obtain overlapping images of an
area on the ground viewed from several
different incidence angles. Any two
of these images form "pseudo-stereo-
pairs" which through a suitable
geometric model can be used to compute
surface elevations. The paper reports
current results of an effort at the
Goddard Space Flight Center to develop
an automated algorithm for computing
elevations from SIR-B image pairs
using the Massively Parallel
Processor.

Background

Historically, the derivation of
elevations from stereo pairs has
followed two general approaches: the
contour and the profile. With the
contour approach, the stereo pairs are
adjusted in a viewer such that only
objects at a certain height will
overlap perfectly. The interpreter
than traces the path of perfect
overlap. In the profile approach, the
spacing between the stereo pairs is
adjusted until a given object overlaps
perfectly in the two images. The
height of the object is then obtained
as a function of that spacing.
Objects along a given line are usually
matched with this technique and thus
the term "profile". The second
approach has been adopted for
implementation on the MPP.
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Difficulties in Stereo Matching

The major difficulties in detecting

points or areas where perfect overlap

occurs (i.e., matching of

corresponding pixels in the two

images) are:

1. Different brightness levels in

the two images.

2. Local distortions of the image.

3. Low contrast areas and noise.

The first difficulty is often obviated

by the use of normalized correlation

functions for matching grey level or

edge images. The second is inherent

in stereo analysis because of the
different viewing angles and makes

automated matching more difficult
than, for instance, in the case of

matching control-point chips in

Landsat images. It occurs most

severely in regions of rapidly

changing terrain and creates a

horizontally stretched or compressed
area surrounding corresponding pixels

in one image relative to the other.
Because of the large off-nadir viewing

angle and difference in viewing angle

required to achieve reasonable
accuracy, this problem is particularly

acute in radar images. Thus, the
basic clue used to determine the

elevation also makes the determination

of that elevation more difficult.

Any techniques for correcting local
distortions must take into account the

fact that the distortion function can

have a broad band of spatial

frequencies. For example, the
distortion function for a mountain

range _ould have low frequencies, but

added to these would be high

frequencies caused by rock formations

making up the surface. When a human

observer fuses two images seen through
a viewer, the low frequency
information is used to obtain an
initial fusion in which the eyes are
brought into alignment (a technique
used for automatic focusing of some
cameras) and then high frequency
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information brings out a detailed

perception of depth. The progression

from low to high frequency suggests

that a hierarchical approach for

detecting matching pixels would be

appropriate. With this approach, an

initial match is performed on low

frequency information in an image and

then increasingly higher frequencies
are incorporated to obtain the final

matching of corresponding pixels.

Even with no local distortion, errors
can occur due to noise, spatial

periodicities and low contrast in the
image. One way of reducing errors in

general is to provide redundancy by

computing matches at nearly every
pixel in the image. Then continuity

constraints on the ground surface can
be used to correct local

discontinuities in the elevation.

Matching at nearly every pixel is a
formidable task on standard serial

computers. However, the architecture
of the MPP is well suited to the local

neighborhood operations required for

matching pixels. The resulting speed

allows iterations of the matching

algorithm computed at every pixel in

512 x 512 images to be completed

within seconds. The following

sections discuss the matching

technique developed for the MPP and

results obtained using the MPP

algorithm.

MATCHING TECHNIQUE

The matching algorithm developed for
the MPP is an example of what has been
termed the Hierarchical Warp Stereo
(HWS) technique. Initial work on
stereo analysis using a hierarchical
approach was done by Mart and Poggio
(1979). The Marr-Poggio algorithm
performs low pass filtering and edge
detection on the two stereo images and
then matches the edges. Filters of
several bandwidths are used from I/I00
to I/4 the highest frequency. An edge
in one image is said to match an edge
in the other if I) that edge appears
within a given search area, 2) the



slopes of the two edges match and 3)
the direction of the change in
bPightness of the two filtered images
is the sameacross the edge. The
relative location of edges in the most
highly (nard,west bandwidth) filtered
image determines the relative
positions of large objects in a scene

(For instance, mountains oP mountain
ranges.) These displacements are then
used to define search areas for

corresponding edges in the second most
highly filtered image. The procedure
is repeated until corresponding edges
are matched in the least filtered

image.
More recent work has been reported by
Quam (1984) who processes multiple
resolution versions of both images (by
sub-sampling by powers of 2 in both
directions). Starting at the lowest
resolution, matches are calculated
using a normalized correlation measure
applied to neighborhoods or windows
surrounding reference and test
pixels. The disparities between
corresponding pixels (i.e., difference
in their location in the two images)
are then used as a one dimensional
distortion function to warp one image
(the test image) so that its matched
pixels will be in the same location as
in the other (the reference image).
The warped image is then resampled at
the next higher resolution. This
cycle is repeated until the highest
resolution images are matched. The
warping operation at each iteration
reduces the local distortion so that
at the next iteration with the next

higher resolution there is a higher
probability of obtaining a good match
between pixels. At the end of the
process, the sum of the distortion
functions from all iterations forms

the disparity function used to compute
elevations. Quam's algorithm also
eliminates potentially bad matches at
each iteration by interpolating across
pixels with low values of maximum
"match scores" obtained for the

reference neighborhoods over the
corresponding search areas in the test
image.

MATCHING ALGORITHM ON THE NPP

The algorithm developed for the MPP is
similar to the Quam algorithm with the
following exceptions:

I. Instead of applying equal sized
windows to versions of the input
images at incPeasing resolution,
decreasing sized windows are
applied to each iteration to the
original input images. This
eliminates the need sub-sampling.

. Iterations repeat until the
neighborhoods are of a size
within which there is no useful
information for correlation.

At each iteration, the net
amount of warping (i.e., an
updated disparity function) is
computed. This net dispaPity is
always applied as the warping
function to the original test
image which eliminates loss of
information at each warp
iteration.

. At each iteration, areas where
bad matches occur are detected
and interpolated over. Then the
disparity function is smoothed
before being used for warping.

The matching algorithm consists of the
following steps:

I. Preprocessing of the test image,

2. Determination of matches,

3. Removal of "bad match" areas in
the disparity function,

4. Smoothing the resulting
disparity function,

5. Warping the test image.

The steps 2 through 5 are _epeated for
each iteration. The following
subsections discuss each of these
steps in detail.
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Preprocessing of the Test Image

Because of the viewing geometry, the
resolutions of the two SIR-B images
are different in the stereopsis
direction. Thus, a linear scale
change is applied to the test image so
that its resolution is the same as
that of the reference image. This
operation is implemented using a
linear warping function in the
steYeopsis direction. Second, the
test image can be translated to reduce
the absolute value of the maximum
disparity between the two images.
Translation is effected by making the
warping function constant over the
image. When this is done, the size of
the initial search area can be
reduced. The amount of initial
warping can be determined
mathematically based on the different
synthetic aperture radar incidence
angles or it can be determined
interactively by displaying the
reference and test images. In either
case, the initial warping function is
incorporated into the net disparity
function when determining elevations.

Determination of Matches

For each reference image pixel, a
match is performed between a
neighborhood surrounding that pixel
(the "template") and neighborhoods
within a search area in the test
image. The location of the center
pixel within each neighborhood in the
test image relative to the reference
pixel is the disparity value
associated with that neighborhood.

The measure used for matching
neighborhoods is the normalized mean
and variance correlation given by:

Where Xi and Yi-k are grey levels of
the i th pixels wlthin the template
neighborhood and the k-th in the
search area respectively. The values

X and Yk are the mean values computed
over the template and K-th search area
neighborhoods.

For each pixel in the Feference image,
the match score fo_ all neighborhoods
within the search area is computed.
The pixel at the center of the
neighborhood with the highest
correlation value o_ match score is
selected as the matching pixel. The
resulting disparity function is,
therefore, made up of integer values.

Remora] of "Bad Match" Areas in the

Disparity Function

In orde_ for stereo analysis to
produce correct topographic results,
there must be a one to one
correspondence between pixels in the
test image and those in the reference
image (at least down to the resolution
required to produce the desired
elevation accuracy). For synthetic
aperture radar images, this means
that, I) both images must be taken
from the same side of the spacecraft
(or aircraft) , and 2) both incidence
angles must be such that there is no
"layover" due to large surface slopes,
and that there are no "shadows". If

the image having the larger incidence
angle is used as the reference image
and both images meet the above two
requirements, it can be proven that
the disparity function will always
have a gradient (or slope in the
stereopsis direction) between 0 and
I. If "ground range" images are used
(where both images have the same pixel
resolution), the slope of the

Match Score (k):
(Xi - X) x (Yi-k - _k )

SQRT(Z(Xi - _)2) x SQRT(_. (Yi_k - Yk )2)
I 1
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disparity function will always be
between ± I. This result is necessary
if there is to be a one to one mapping
between the test image and its warped
version when the disparity is used as
the warping function. Since the slope
of the disparity function must be
between ±I, a simple test for a bad
match is to observe adjacent values of
the disparity function and determine
if there is a jump of more than 1
pixel.

The human visual system appears to
have the capability of interpolating
surfaces over areas where bad matches
occur. This process is emulated in
the MPP algorithm by interpolating the
disparity function across all areas
where a bad match has been detected.
The detection of bad matches and the
interpolation are accomplished with
the following operations:

. Detection of "bad match pixels"
(pixels where discontinuities
OCCUY)

Sudden jumps in the disparity function
are detected by examining a 3 x 3
neighborhood surrounding each pixel.
If the disparity value at the pixel
differs from that of any of its
neighbors by more than one, the pixel
is identified as having a bad match.

e Expansion or growth of each bad
match pixel to form a
neighborhood

If the maximum difference between the
disparity value at a pixel and those
of its adjacent neighbors is "d", then
one must interpolate the disparity
function over a neighborhood
surrounding that pixel whose diameter
is at least "d" to satisfy the
constraint that the slope of the
disparity function be less than +I.
The expansion of each "bad match
pixel" to form a neighborhood is done
for this purpose. This is
accomplished on the MPP by alternately
expanding each pixel into 4 and 8
element neighborhoods. The resulting
neighborhood is octagonally shaped. A
diameter of 2N is achieved with N
iterations. As each pixel is
expanded, the _esulting overlapping
neighborhoods form bad match regions

3. Interpolation of the disparity
function over resulting bad
match neighborhoods

Interpolation is performed using heat
flow equations. The architecture of
the MPP is well suited to the
iterative solution of the boundary
value partial differential equations
typical of heat flow problems. To
perform the interpolation, two
dimensional heat flow partial
differential equations are applied to
solve for the steady state
"temperature" or disparity in the bad
match regions assuming that the
bordering pixels surrounding the bad
match area are held at a constant

"temperature" or disparity. The
equations used for obtaining the
interpolated disparity at pixel [i,j]
at iteration t+l from the values at
iteration t ate:

D(i,j,t+l) : D(i,j,t) +
d(D(i,j,t))

dt

where

d(D (i,j,t))

dt

c)2 (D (i ,j,t))

_i 2

: _?(D(i,j,t))

_j2
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The second partial differential
equations reduce to

d(D(i ,j,t))

: D(i,j+l,t) + D(i,j-l,t) + D(i+l,j,t) + D(i-l,i,t) - 4D(i,j,t)

dt

v1hen is is assumed that the two
dimensional grid increments are
unity. The number of iterations
required to teach "steady state"
is dependent on the size of the bad
match regions.

Smoothing the Resulting Disparity
Function

After interpolation, a smoothing
operation is applied over the whole
disparity function in order to obtain
a smoother warping function with
fractional pixel values rather than
integer values. Smoothing is
performed on the MPP by averaging over
a neighborhood proportional in size of
the neighborhood used to obtain the
disparity function.

Warping the Test Image

The smoothed disparity function is
used as a one dimensional distortion

function to "geometrically correct"
the test image in the stereopsis
direction. The brightness values in
the warped image are obtained by
applying a linear interpolation
function to the test image data in the
resampling process.

disk. This interaction provides the
ability to experiment with various
parameter values and quickly observe
the results. In addition, the control
ot shell program is designed so that
operations can be easily modified or
added.

The operations presently implemented
in the matching algorithm which can be
run interactively are shown below
along with the input parameters which
can be selected:

i. INITIAL WARP (left edge
movement, tight edge movement)

2. MATCH (neighborhood size, search
area size)

, "BAD MATCH DETECTOR"
(discontinuity threshold for bad
match, neighborhood diameter for
expansion)

e INTERPOLATE (number of
iterations)

5. SMOOTH (neighborhood size)

6. WARP

INTERACTIVE OPERATIONS ON THE HPP

The matching algorithm on the MPP has
been implemented to be run in an
interactive mode where parameters such
as neighborhood sizes, search a_ea,
and discontinuity thresholds can be
input before starting each step of the
matching algorithm. At the end of a
given step, the results (such as the
disparity function, or the warped
version of the test image) can be
immediately displayed or saved on

The left edge and tight edge movement
in the INITIAL WARP operation define
the linear warp function in the
stereopsis direction. If they are
equal, only a translation is applied
to the test image.
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Interactive Turn Around Time

The following table shows turn around
times for the six stereo matching
operations. Where times are dependent
on parametoYs, some example parameters
and the corresponding times are
shown. The times are measured from
the time a key is pressed on the
terminal to start the task to the time
the next prompt is displayed
indicating that the task is
finished. Times less than about a
half second could not easily be
measured.

The matching operation which is the
most computationally expensive task
has been optimized to require a time
p_opoYtional to the length of the
sides of the neighborhoods as opposed
to the a_ea. The smoothing operation
is unoptimized and requires a time
pyoportional to the area of the
neighborhood. However, since the time
required for smoothing is not
prohibitively long for interactive
purposes, this optimization has not
yet been implemented.

INTERACTIVE TURN AROUND TIME FOR

STEREO ANALYSIS OPERMIONS

Oper ati on Parameter Time in Seconds

Initial Warp 0.5

Match
II x II

21 x 21 Nbh. size
41 x 41

5
I0
20

Detect Bad Match
2
4
8

Radius
0.5
0.5
l

Interpolate
250
5OO

I000
No. of
Iterations

Smooth
II x II
21 x 21
41 x 41

2
6

21

Warp 3
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RESULTS AND CONCLUSIONS

Ti_e matching algorithm has been tested
on overlapping SIR-B images with
incidence angles of 25 and 42 degrees
taken over a plateau region in
Northern India at its border with
Bangladesh. The signal to noise ratio
is high almost everywhere in these two
images. The results of the matching
algorithm on these imaaes are
illustrated in Color Plates II & III
Figures la and Ib show the reference
and test image. Viewing figures la
and Ib stereoptically, one can observe
the plateau region and the river
valley around it. Figure 2a is the
reference image again and figure 2b is
the test image after it has been
warped during the matching process.
If one views figures 2a and 2b
steroptically, it will be seen that
there is virtually no depth since the
warped test image matches the
reference image very well. Two
iterations of matching and warping
were required to obtain this image.
The first iteration used a 25 pixel
square correlation neighborhood and
the second, a 13 pixel square
neighborhood. Further iterations with
smaller neighborhoods I0 pixels square
or less yielded too many
discontuities. This indicates that
for many areas in the particular SIR-B
images used, there is insufficient
information in neighborhoods smaller
than about I0 pixels square to produce
good correlation. Figure 3 is the two
dimensional disparity function derived
during the matching process. Dark
areas in this image are where pixels
in the reference imaqe lie to the
right of their correspondings pixel in
the test image. In the light areas,
the opposite is the case. The
disparity function is approximately
linearly proportional to the actual
elevations in the images with the dark
areas in figure 3 co_responding to low
elevations and the lighter areas to
higher elevations. In figure 4, a
three-dimensional perspective view is
presented of the disparity function.
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In generating this view, the disparity
function was treated as a two
dimensional surface illuminated by a
light source at approximately the
location of the shuttle radar sensor
about 42 from vertical. One can
easily identify the plateau region and
river valleys corresponding to those
seen in the original stereo pairs.

A close comparison of figures 2a and
2b shows that the matching portion of
stereo image analysis for determining
elevation can be accomplished with the
MPP stereo matching algorithm as well
as human observers in most areas where
the local distortion is not too
severe. A human capability which can
possibly increase the resolution of
the matching algorithm is the ability
to discern and match edges practically
to the nearest pixel. In areas where
there are significant edges, one may
be able to use smaller neighborhoods
for correlation and thus, in these
areas, increase the spatial resolution
of the elevation data. The inclusion
of edge detection and the matching of
edges into the algorithm is one of the
current changes being implemented on
ti_ MPP.
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The Architecture of Tomorrow's
Massively Parallel Computer

Transcribed from an after-dinner talk given
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Goodyear Aerospace delivered the MPP to
NASA/Goddard in May 1983, over three
years ago. Ever since then we have tried to
look in a forward direction. There is always
some debate as to which way is forward
when it comes to supercomputer
architecture. In this talk, I will describe
improvements to the MPP's massively
parallel architecture in the areas of data I/O,
memory capacity, connectivity, and indirect
(or local) addressing.

I/0

Several years ago, Goodyear decided they
should advertise the fact that they are
something more than a tire company. They
started a series of ads. A particular ad
appeared in the Wall Street Journal a couple
years ago saying that our computer can add
and subtract 6 1/2 billion times a second
(that's on eight bit additions). Someone at
Goodyear thought up captions for the three
men in the ad. The first man says "How
long does it take to get the 6 1/2 billion pairs
of numbers into the computer." The second
man answers, "Oh, about a half an hour,
then you add and subtract them in 1
second." So the third guy says, "Well, I
hope they still make tires."

This points out the I/O problem of the MPP.
Actually, the problem is shared by most
supercomputers...they tend to be I/O
bound. At the conference today, the
speakers were saying that they were I/O
bound. Figure 1 shows the rates at which
data is a'ansferred between various parts of
the machine. The processing is going on
between the PE registers and the ARU
memory at 20,480 megabytes per second
(assuming 16,384 wires pushing data at 100
nanoseconds per bit), so you can see the
magnitude of the processing rate. Data
slides in and out of the ARU memory from
the side over 128, rather than 16,384 wires,
so you get 160 megabytes per second, still a
fairly respectable speed. In most computers
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Figure 1

if you turn on all the I/O, the processing
would grind to a halt. It would take all the
memory cycles. On the MPP you can run
the I/O full bore and slow down the

processing rate by 1.6%. The processing
rate doesn't see the I/O.

The I/O situation gets worse once we've put
the data into the staging memory. Now we
want to move it to the VAX computer
through a DR780 channel, which is the
fastest way you can get data in and out of a
VAX but that's only at 6-8 megabytes per
second. This is where the half hour figure
comes from. You've got to put 6 1/2 billion
pairs of numbers through this DR780
channel, which takes about half an hour,
and the PEs would add them up in about 1
second. It's basically a limitation of the
VAX. And it gets even worse when you
look at what's the fastest way to get data in
and out of the VAX, (unless you change the
disk packs or something) you're limited to a
tape drive that records at 6250 bits per
inch---and 6250 bpi tape at 120 inches per
second gives you .75 megabytes per
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second. The significant difference between
this .75 megabytes per second and the 160
megabytes per second rate out of the stager
is basically your I/O problem.

You've got several ways of solving the
problem, or at least making it less
noticeable. We did design a disk farm for
the MPP that would move data in and out of

the staging memory at the staging memory
rate of 160 megabytes per second. That's
one possibility. The other possibility is
some kind of high-speed network. If you
had a device that was generating data at
some fast rate, you could hook it directly
into the staging memory at up to 160
megabytes per second. You want to bypass
the VAX completely.

Another possibility is to increase the 160
megabyte per second rate to and from the
array. Figure 2 shows the ARU as it exists
right now. It has 128 columns, plus four
spare columns. The data comes in from the
left, goes out to the right, and is 128 wide at
160 megabytes per second input and output.
If you aren't satisfied with that rate, you
could divide the array up into four slices,
put data into each slice simultaneously, and
take it out of each slice simultaneously.
This would give you four times the I/O rate,
or 640 megabytes per second. If you want
to preserve the redundancy feature of the
array unit, you could add four spare
columns to each slice of 32, so your array
unit would have 144 columns in it, instead
of 132.
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Memory Capacity

There seems to be a Parkinson's law of
computer memory that says no matter how
large you build the computer memory,
there's always a computer problem that will
overflow it. That's true of any computer,
whether it's a personal microcomputer or a
big supercomputer. The MPP is no
different. Some of the speakers today
talked about how they could use more
memory...so there is a memory problem.

In the original _pecification back in 1979,
NASA wanted 256 bits per PE for a total of
half a megabyte of ARU memory (see table
3). We figured that was too small, so what
we delivered was 1,024 bits, for a total of 2
megabytes of ARU memory. At that time
we could get 4xlK static RAM chips with
an access time of about 50 nanoseconds,
and those are what we used to implement
the MPP's ARU memory. We know that
memory technology is always growing, so
when we designed the machine we put in
16-bit addresses, so we could increase the
ARU memory size later when the memory
technology improved. Today, what we
would do is build a board with memory
sockets that could accept either 16K or 64K
memory chips. Right now the 4xl6K static
RAM chips are readily available. Actually,
the 4x64K RAMs are also available.
They've got a high price tag but in a few
years that should drop down. Today we
could supply memory boards with either
16K or 64K bits per PE. This would
increase the memory to either 32 or 128
megabytes. So you can get either 16 times
or 64 times your present capacity---which is
2 megabytes. It's therefore real easy to
expand ARU memory in the machine.
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Table 3

In 1983, we delivered four banks of staging
memory using 64K dynamic RAM chips, so
the staging memory had a capacity of 2
megabytes and an I/O rate of 20 megabytes



per second (see Table 4). We put 32 slots in
the cabinet so that it could be expanded to
32 banks. This year we did expand it up to
16 banks. At the same time, we changed it
to larger chips---256K chips. So right now
the staging memory is 16 times larger than it
was originally. The speed is 4 times
greater. We still have half the slots available
and at some time in the future we could

expand it up to twice as big and twice as fast
by populating all 32 slots. You can even go
further than that; 1,024K (1 megabit)
memory chips. These are starting to
become available. So we could change the
32 boards and put in chips that are four
times bigger and make the memory 256
megabytes. If you do that and you want the
faster I/O in the ARU you've also got to
feed it. You've got to take the staging
memory and make it 128 banks...this will
get the 640 megabytes per second. That
will also give you a gigabyte of memory for
the stager.
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Connectivity

It is real easy to change the architecture of
the machine for faster I/O and more memory
and still be compatible with the current
MPP. Thus, the modifications I have
described so far are still upwardly
compatible with the current MPP.
Programs wouldn't have to be changed to
use the larger memory capacity and faster
I/O. On the other hand, modifications to
connectivity and addressing could reduce
upward compatibility. Someone defined
upward compatibility as meaning that you
get to keep all the old mistakes. So if you
want to forget about being compatible and
look at other changes in the machine, then
we can talk about connectivity and indirect
addressing.

Figure 5 is a picture of the curreat ARU. It
has 16,384 processors and they
communicate with each other in the north,
south, east, and west directions over a
2-dimensionalmesh. Thisisgoodforthose
problemsinwhich communicationmust be
nearestneighborovera 2-D mesh. With the

topologyon theoutsideitcan be changed
intoa I-D mesh. And for 3-D problems
you can alwaysrun athirddimensiondown
therandom accessmemory, especiallyif
you make that memory larger...tosay
65,536 bits. So, you can treatthe l-D,
2-D,and 3-D problems withouttoomuch
trouble. However, there are a lot of
problemsthatre.quireotherconnectivities.
We did add thestagingmemory, which in
some respectshelpsbecauseifyou don't
likethemesh connectivity,you canalways
move thedataout tothe stagingmemory,
rearrangeitand bringitback intotheARU
so thatitemsthatused to bc farapartare
now close together. So thisstaging
memory doeshelpsomewhat ingivingyou
more connectivity than the 2-D mesh.
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Figure5

Looking back at the history of Goodyear
Aerospace (see Table 6), some interesting
trends in connectivity arise. Back in the mid
1960's we did a study contract for Griffis
Air Force Base in Rome, New York, called
The Advanced Computer Organization
Study. We were looking at parallel
processors that have 100 PEs in them. We
figured that we wanted to hook anything to
anything else and the only way we knew
how to do this was with a sorting
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network--which in some respects is kind of
an ideal--it will do any permutation by
sortinR.
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Table 6

In the early 1970's we built some
STARANs that consist of about 1,000 PEa
and we connected them together with a 256
wide flip network, which is basicaUy the
same as an omega network or a butterfly
network...it has the same topology. So the
STARAN had less connectivity and more
PEs than we were looking at in the mid
'60's. Later, we built the ASPRO computer
with about 1,800 PEs and a narrower flip
network at 32 wide, that had less
connectivity than the STARAN. We then
delivered the MPP with 16,384 PEs and a
2-D mesh. When you look at this over
time, we have been increasing the number
of PEs and reducing the connectivity.

One way to explain the trend is to say
"Well, back in the '60's we were young and
more visionary than we are now. But now
we are more practical and have more
practical connectivities." I think the real
trend is that each of these projects was in
response to an RFP, and basically, we gave
the customer what he wanted. Back in the
mid '60's Rome was being more visionary,
and now NASA is being more practical and
asked for a 2-D mesh. This is an illustration

of the Golden rule, "Whoever has the gold
makes the _-,!es." Whatever the customer
wants is what we give them. That's what I
think is the real explanation of this.

Over the years, we have been looking at
connectivity networks other than the mesh.
If you had your druthers, you would like to
hook the 16,384 processors with a full
cross bar (see Figure7) so that any
processor could talk to any number of its
neighbors and could broadcast to any
number of its neighbors. Unfortunately,
that requires something like a quarter of a
billion cross points, so it's rather
impractical.
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You can go various steps toward the ideal of
full connectivity (see Table 8) using two
approaches. You can take something like a
flip network or an omega network...several
people have talked about this network and
they all give it different names. I call it a
flip network, it has synonyms like omega
network, butterfly network, delta network,
etc.. They all have the same basic network
topology, it's just different names. To
connect n items together it takes n/2(log2n)

INTERCONNECTIONN_S

• FLIPNETWORK

N/2 LOG2NSWITCHES
1141,688S_ITCHESFOR16,38tl ITEMS

• BITOIIICSORTNETHORK

_EI.F_OKTR_ING

N/ll(L_)(I(_) _ITC[S
860,160 SWITCHESFOR16,384 IIEIqS

Table 8

switches. If you look at 16,384 processors,
then it takes 114,688 switches, which is
considerably less than the quarter billion
needed for ideal connectivity. This does
most of the useful permutations. For most
problems this is what you want. If you
want to be able to do any permutation of
16,384 items, then you would use a
network that is about twice as big, requiting
221,184 switches. Unfortunately, it takes
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awhile to compute how to set up such a
network. If you waat to go one step furthex
you use the bitonic sort method, which in
some respects is self controlling. It will
compute the setting while the data is being
fed into it. And it takes n/4(log2n)(l+log2n)
switches, which is 860,160 switches. So
these are three ways of connecting the PEs,
depending on what you want communicated
between the processors.

The hypercube is basically somewhat like
the flip network (or omega or butterfly), it
has the same kind of complexity. These
methods are the basic ways of improving
the connectivity of the MPP, but then you
lose something in compatibility. Currently
your programs communicate north, east,
west, and south, so you would have to do
some work to use these other connection
schemes.

Indirect (Local) Addressing

all PEs must look at bit 43 in their
memories. This means that when we
program the machine, we look at it as a
bunch of memory planes and processing
planes. For example, you could take
memory plane number 43 and move it from
the memory into one of the processing
planes or store .a processing plane into a
memory plane. All the data in one plane
moves en masse in one cycle. So you look
at the machine as a bunch of memory planes
and processing planes. If you look at one
bit of a plane, then you're looking at all bits
of the plane.

In all the textbooks the MPP and the
Connection Machine are called SIMD

machines---I question whether they are
really SIMD machines. In the clawic SIMD
machine all the opcodes and addresses come
from a common control unit (see Table !0_
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Figure 9 shows what one MPP PE looks
like. The random access memory has a
global address that comes from the control
unit. In fact, if you look at how we
implemented the PE, all the logic (except the
memory) is on one chip, the PE chip, which
doesn't even see the memory address. The
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Figure 9

only connections between the memory chip
and the PE chip are the data paths. The
global address goes to the memory chips
directly and doesn't know that there is a PE
chip at all. So the memory address is a
global address. This means that if one PE
wants to look at bit 43 in its memory, then

and this is true of the Connection Machine,
the MPP, and any bit-serial parallel
processor. Though all the textbooks call
this SIMD, I can argue that it is really SISD,
Single Instruction Single Data path. If you
look at a conventional computer, you have a
processor and memory and you take
memory words from the memory into the
processor and you store memory words.
The only difference is that our memory
words are 16,384 bits each. So you look at
this MPP (seeFigure 19, or the Connection
Machine, as a conventional computer that
happens to have a very large memory word,
in this case 16,384 bits per memory word,
and all we are really doing is moving
memory words back and forth between
processorsand memory. So you can argue
thatthe MPP and these other bit-serial

parallelmachinesarereallySISD machines.
Ifyou lookatwhat aMIMD machineis;the
opcodcsand addressescome from localPE
memories and registers.Each processor

generatesitsown addressesand opcodcs
from programs storedinitsown memory,
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as opposed to the other case where they all
come from a common control unit. So I can

argue that a true SIMD machine would have
the opcodes come from the control unit and
still have a single instruction stream,
however, if you really want multiple data,
you should really have the addresses come
from local memories and registers. This is
somewhat in between the classic SIMD and
MIMD machines. So, I think the true SIMD
machine is one in which the addresses are
generated locally, and the opcodes are
generated in the control unit.

We found many problems where we really
would like to address the memory via a local
independent address rather than just through
a global address. One such case comes up
when trying to factor large numbers on the
MPP. If we are lying to factor a particular
large number, then what we do is look at
factors of 1,000 to 4,000 quadratic
residues. Table 12 shows an example of
4,000 quadratic residues. What we do is
find the prime factors of each of these. We
have maybe 4,000 primes in the horizoatal
dimension, and In'st we find what primes
factor these residues, i.e., we try to divide
them all by 2, then by 3, then by 5 and so
on. We set up a flag matrix that shows
where the division is exact. However, we
are not done then. We want to take out,
say, all the factors of 2, so if the number is
128, then we have to take out seven factors
of 2 from that number. If it is 243, then we

wm_

1 0 0 0 0 0 0 0 0 0 0

m 1 1 "1 0 0 0 0 0 1 0 0

_ 0 1 0 0 0 0 0 0 0 0 0

_ 0 0 0 0 0 0 0 0 0 1 1
_1 0 0 0 0 0 1 1 0 0 0 0

_3 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0

have to take out five f_tors of three. One

way of doing this is to keep dividing by two
until they are all odd, then divide by three as
much as possible, and it can be seen that
this is a sparse operation, i.e., most of the
PEs are not participating. Each one of these
divisions is in a separate PE, and most of
them are not participating. We keep
dividing out the higher powers of these
primes. What we would like to do to
improve the situation is to pack the data
together so that we get the kind of
arrangement shown in Table 13. We now
start with let's say 15 columns for the prime
factors. And then we divide these numbers
by these numbers, do that until all the
powers have been reduced and then we go
on to the next column. We would rather do

something 15 times than 4,000 times, and
we would like to rearrange the data like that,
pack it together where it is sparse. This
improves the utilization of the machine.
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Wben we wcte lookingforaway todo this,
we foundthatwe couldusetheshiftregister

(see Figure9). The shiftregisterwas
originallyintheretoimprovethemachine's
times for multiplication,division,and
floatingpointoperations.However,itrams
out that the shift register can be used for
several other purposes. The shifting is
maskable, so I can shift some shift registers
and not shift others. So in effect, it turns
out to be a locally addressable memory
because I can turn the shifting of it on and
off. Unfortunately, it only has 30 bits in it,
I wish it were larger. So there is a small
quantity of locally addressable memory in
the MPP, and we have found out how to
use it to help some of these problems.

To improve the MPP, I would probably
replacetheshiftregisterwithaRAM. You
can simulatea shiftregisterwithina RAM

and thenyou can do otherthingswiththe
RAM. You would reallyliketomake the
whole memory locallyaddrcssable,butthen
you have some problems.Ifthisisoffon a
separatechip,thenyou havetoworry about
how you transmittheaddressfrom thePE
intothememory and back again.Iteither
takesa lotof pinsorsome othercircuitry.
The compromise istoput a RAM on the

chipand putanotherRAM offthechip.The
on-chipRAM isimplemented with VLSI
techniques.Memory manufacturersmake
alltheirmemory chipswiththeirown rules
togeta lotdensermemory chipsthanwhat
you can buildjustusingthestandardVLSI
design rules. If you stillwant a lotof
RAM, then you stillneed a standard
memory chip from a manufacturer.
Anyway, you couldbuildyourown locally
addressableRAM. The placeswhere you
would like to see thisis in Artificial

Intelligence(AI).

I was looking at AI problems on the MPP.
I found that this local addressability could
be used to help out. For example, if several
concepts are stored in each PE, while one
PE is looking at its third concept, another
PE may be looking at its fourth concept.
With global addressing that is hard to do.
With local addressability, it turns out to be a
lot easier.

When I got Danny Hillis' book, the first
thing I looked for was to see how they got
local addressability...I couldn't find it
anywhere. I know there are some
Connection Machine people here, and I
think that local addressability is a problem

and I would k to see a newer machine
havelocallyaddressableRAM.

Conclusion

In conclusion, I talked about four topics
(see Table 14). I/O---we can get transfer
rates up to 640 megabytes per second.
There are devices around that can supply the
data and accept it at this rate. We can
increase the memory capacity up to 128
megabytes in the ARU and over a gigabyte
in the staging memory. For connectivity,
there are several different kinds of
multi-stage networks that we can consider.
And we also should do something about
local or indirect addressing.
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ABSTRACT

A finite difference version of

the equations governing two-

dimensional, non-divergent flow

on a sphere is implemented and

integrated on the MPP. The MPP's

performance is then compared with
the CYBER's.
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dynamics.

INTRODUCTION

The purpose of the work described

here was to demonstrate the feas-

ibility of using a massively par-

allel architecture to solve the

hydrodynamic equations as they

are used in numerical weather

prediction (NWP).

Models used in NWP are commonly

divided in two parts: the "dyna-

mics" and the "physics". The

dynamics performs the time inte-

gration of the equations of mot-

ion. The physics computes the

heating, friction, and sources

and sinks of water vapor. These

two parts present very different

problems to a highly parallel

machine.

Many of the calculations in the

dynamics involve the parallel

updating of the many degrees of
freedom allowed in the discreti-

zation and are thus very suitable

to a machine like the MPP.

Occasionally, however, it is

necessary to obtain a spectral

transform or solve an elliptic

equation. These problems, al-

though parallel, are non-local

and thus difficult to implement

efficiently on the MPP's nearest

neighbor network. Fortunately,

the non-local calculations can be

minimized by a suitable choice of

numerical scheme. For example,

grid-point models, in which the

equations are finite differenced

in a latitude-longitude lattice,

are much preferable to spectral

models, which require frequent

transformations between physical

end spectral space. Still, non-
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local calculations are not com-

pletely avoidable. In particular

they appear in the solution of

elliptic equations that occur

when implicit time differencing

schemes are used. Although these

too could be avoided by using an

explicit method (which is in fact

done in many models, even on

serial computers), we feel the

architecture should not be so

specialized as to completely for-

bid such choices.

Problems in the physics part of

the codes are probably even more

serious. In these, it is their

non-parallel, rather than non-

local, nature that makes for

difficulties. As an example con-

sider condensation. In most

models this is done level by

level, testing for super-satura-

tion and passing the excess water

to the next level below. That

level in turn may become super-

saturated, or may have been so

already. The condensation calcu-

lation is then repeated and so on
until "rainfall" reaches the sur-

face. If parallelism is

exploited by mapping each latitu-

de-longitude point onto a dif-

ferent processor (this is really

the only practical alternative in

a machine with as many processors

as the MPP), each one will in

general encounter different con-
densation conditions. Processors

at all grid points where there is

no condensation, for example,

will be idle in this segment of

the code, and parallelism will be

lost.

THIS STUDY

To start looking at the problems

one faces with a parallel archi-

tecture, we decided to use the

barotropic vorticity equation as

a model of the "dynamics" part of

NWP models. In this way we can

test both the parallel grid-point

162

updating segments and the more

challenging problem of solving an

elliptic equation.

At each step of the calculation

we update the following equation

for a new value of the vorticity:

(1)

_

where _ is the vorticity, and u

and v are the zonal and meridio-

nal velocity components of the

non-divergent flow, _ and _ are

the latitude and longitude, and f

is the Coriolis parameter. As

mentioned already, (1) is solved

by finite-differencing on a lati-

tude longitude grid. A leap-frog

differencing scheme is used in

time. Once a new value of the

vorticity is obtained from the

discrete version of (1), the

Poisson equation:

3

is solved for the stream-func-

tion. To solve (2) we use a

"fast" method in which the equa-

tions are first Fourier

transformed in the zonal direc-

tion, then finite differenced in

the meridional direction and sol-

ved as a set of tri-diagonal sys-

tems. The velocity components u

and v are then obtained from



Having u and v, (1) can be up-

dated again and the cycle com-

pleted.

To test the model, (1) was forced

with sources of angular momentum

and eddy vorticity, and damped by

a linear drag.

Tests were conducted in parallel

on the MPP and the CYBER 205 at

Goddard Space Flight Center. The

CYBER calculations were done with

HALF-PRECISION (32-bit) arithme-

tic. Both MPP and CYBER codes

were optimized for their machines

to the best of our abilities; but

both used exactly the same algo-

rithm. In particular, the "fast"

solver used for (2), which is

very efficient on the CYBER, was
retained on the MPP. On the

other hand, a 128x128 square grid
was used in both cases. This is

optimal for the MPP. Higher reso-

lution would require either doing

a prohibitive amount of I/O, or

keeping more than one grid-point

per processor, which is not pos-

sible with the MPP's limited mem-

ory. The CYBER efficiency,in

contrast, is independent of reso-

lution for all practical choices.

RESULTS

The timing results are shown in

Table I. We have separated these

in two parts: the time spent sol-

ving the Poisson equation (2),

and all the rest, which is mostly

computing the right-hand-side of

(1) and a little housekeeping.

Units are msec./timestep. At the

resolution used, we were taking

200 time steps per day. As may be

seen, the code is approximately

four times slower on the MPP than

on the CYBER. This poor perfor-

mance, however, is due entirely

to the Poisson solver, which runs

some ten times slower on the MPP.

The updating of the vorticity

equation is twice as fast on the

MPP. This is a very encouraging
resul t.

" CODE : MPP : CYBER "

" UPDATING "

" VORTICITY 5.7 11.6 "

" EQUATION "

" SOLVING

" PO ISSON 65.0 6.3 "

" EQUATION

II ll

" TOTAL 70.7 17.9 "
I, II

TABLE I

If the NWP model is grid-point

and uses explicit time differenc-

ing, the elliptic solver is not

needed, and the MPP (or an MPP-

like machine) should do very well

in the dynamics. However, even

if the model is implicit, and one

or several elliptic equations

have to be solved, the situation
is not as bad as Table I would

indicate. In a typical situation

we would be solving some 40 equa-

tions like (1) (4 variables

[u,v,T,q] at 10 levels), but at

most 10 equations like (2). Using

these figures, we can extrapolate

our results to a full, grid-

point, semi-implicit NWP model.

This is shown in Table II. As may

be seen, the situation is much

improved; the MPP is now at near

CYBER performance, even doing all

ten vertical modes implicitly.
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Obviously, much work remains to

be done before massively parallel

machines can be used efficiently

for numerical weather prediction.

In particular, it is imperative

that much more parallel formula-

tions and/or algorithms be deve-

loped for the physics codes, a

problem we have not even begun to

address here. Nevertheless, we

feel that the results presented

indicate a very real possibility

of using MPP-like machines in

NWP.

" CODE : MPP : CYBER "
..... ll

" UPDATING

" VORT IC ITY 228 464 "

" EQUATION "

" SOLVING "

" POISSON 650 63 "

" EQUATION

___ii

II II

" TOTAL 878 527 "
II II

TABLE II
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ABSTRACT

The single instruction stream, multiple

data stream MPP processor consists of

16,384 bit serial arithmetic processors

configured as a 128 x 128 array whose

speed can exceed that of current

supercomputers (Cyber 205). This paper

presents and discusses the

applicability of the MPP for solving

reaction network problems including the

mapping of the calculation to the

architecture, and CPU timing

comparisons.

Keywords: Chemical Net Work Problems,

Eulerian Transport/Chemistry Model, Air

Pollution Model, Coupled ODE-IVP.

I_RODUCTIO_

A detailed model which describes the

transport and removal of photochemical

oxidants, and acidic species and

precursors in the troposphere has been

under development for the past nine

years. The present analysis consists

of about 30 coupled three-dimensional

time-dependent non-linear partial

differential equations and about 50-100

coupled non-linear ordinary

differential equations.

The model is representative of a number

of comprehensive Eulerian

transport/chemistry models being

developed for regional air pollution

problems. However, these models are

only feasible when run on

"supercomputers". Our model was

developed on the NASA-Langley CDC-STAR

computer and is currently being

exercised on the NASA-Langley Cyber

205, the NCAR CRAY-I and a FAC M240 in

Nagoya University, Japan. The

execution times are 0.025

CPU-sec

grids-time step
on the FAC _ _0,

CPU-sec
0.007 on the

grids-time step

CPU-sec
CRAY-I, and 0.70 on a

grids-time step

VAX 11/780. Thus, a 24-hour simulation

on the CRAY-I for the eastern United

States with 9500 grid points requires

100 CPU-minutes.

Our experience has shown that

transport/chemistry models can execute

about 70-100 times faster on the

"supercomputers". However, 100 CPU-

minutes/simulation-day is still too

large for most applications. Since

typical applications require

simulations of seven to ten days.

Therefore, to exercise these models

various simplifying assumptions are

used to decrease the CPU time.

However, these assumptions add

additional errors and uncertainties to

the model results. Faster computers

will enable the execution of the "best-

science" model version.

Currently about 90% of the CPU time is

165



spent doing the chemistry

calculations. The chemistry introduces

the stiffness, the coupling, and the

non-linearity into the model. Thus,

the highest priority in continued model

development is to search for ways in

software and hardware to reduce the

chemistry calculation. The purpose of

this paper is to describe our attempts

to exploit massively parallel computer

architectures to accelerate the

chemistry calculations.

MODEL OVERVIEW

The regional-scale combined

transport/chemistry/deposition model is

Eulerian and treats 50 chemical

species. Thirty species are advected,

while the remaining species are short-

lived and are modeled using pseudo-

steady state methods. The mathematical

analysis consists of partial

differential equations for the advected

species and additional algebraic

equations for the steady-state

species. The advected species satisfy

_C.
1

-- + V (VC0) = V.K.VC

(i)

+ R. + S -G., i = i,...,30;
l 1 l

where C i is the gas-phase concentration

of the ith chemical species, V is the

wind velocity vector, K is the eddy

diffusivity tensor, R i denotes the

chemical reaction term, S i is the

source term, and G. is used to describe

the mass transfer _etween the gas and

condensed phases. The algebraic

equations for the gas-phase species

assumed to be at steady state are

written as

Ri(C I, C2,...,C50) = 0,

i = 31, ...,50.

(2)

These equations are representations of

general chemically reactive flow

problems.
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Simulation of regional transport,

chemistry and deposition as described

by Equations (i) and (2) requires

numerical integration. The method

presently used is a combination of the

concept of fractional time steps and

one-dimensional finite elements. This

is referred to as Locally One-

Dimensional, Finite-Element Method

(LOD-FEM). The LOD procedures

(Mitchell, 1969) split the multi-

dimensional partial differential

equation into time dependent, one-

dimensional problems which are solved

sequentially. The transport equations

are solved using a Crank-Nicolson

Galerkin finite element technique.

Chemistry and mass transfer equations

are solved using an adaptation of the

semi-implicit Euler method proposed by

Preussner and Brand (1981).

SCOPING STUDIES

Test Problem I: Chemical Network

Problem

To evaluate the ability of the MPP to

calculate chemical network applications

a simple four species test problem was

selected. The four species (C I, C 2,

C 3, C 4) are involved in the following
chemical reactions:

k I

C I + C2 ----+ C 3 (a)

k
I

C 3 ----+ C I + C 2
(b)

(c)

(d)

The transport equations describing this

system is represented by Eq(1) with

i=1,2,3 and 4.

As mentioned in the model overview

section, one way of numerically solving

complex transport chemistry network



problems is to split the equation into

transport and chemistry parts. The

chemistry calculations using this

technique requires solving the set of

equations

3C.
1

m = R0
_t l

i=I, ...,

# of species

(5)

at each grid point in the discretized

space.

The use of the semi-implicit Euler

method to solve Eq(5) results in the

equations

dC

i djd--C-c [ H ck
1 . 1

r 3 k= I

+ 7 p£. _ C
1 m

£ m

i=l, • • .4

(6)

This set of ODE-IVP's is solved within

each transport time step, i.e.,

to ( tr _ ttransport "

Now consider the case when we have

16,384 grid points in the discretized

spatial domain. Therefore each

chemical calculation within each

transport step requires the solution of

16,384 sets of Eq(6). To implement the

solution of these equations on the MPP

requires first the choice of how to map

the equations to the architecture. In

this case we have chosen to simply view

each processor as a grid point in the

discretized space, and to have each

processor solve its own set of Eq(6).

The algorithm for solution of Eq(6) is

written in Parallel Pascal and resides

on the VAX. The initial conditions and

constants are distributed to each

processor and the algorithm is executed

on the MPP and output is sent back to

the VAX.

The CPU time required for execution of

100 time steps on the MPP of this 4

species mechanism at 16,384 grid points

is 0.293 CPU-seconds. The same problem

was executed on the VAX-11/780 and

required 138 CPU-seconds. Thus for

this chemical network problem the MPP

executed a factor, of 470 times faster

than VAX 11/780!!

Test Problem 2: NO x Transport in
Eastern United States

To test combined transport/chemistry

network problems on the MPP a 3-

dimensional test problem describing the

transport and chemistry of NO, NO 2, 03 ,

and HNO 3 in the lower troposphere was

selected. The governing set of

equations is given by Eqn. (i). An

oversimplified chemical mechanism is

used in this test calculation, i.e.,

NO + 03 + NO 2 + 02 (e)

+

NO 2 + h_+o 2 NO + 0 3 (f)

NO 2 + OH ÷ I-INO 3 (g)

(The OH concentrations are given by an

empirical formula and the 02
concentrations are assumed constant.

Sample results for this test problem

calculated on a VAX 11/780 are shown in

Figures 1 and 2. Presented are the NO
x

emissions for the eastern United

States, and the 24-hour averaged

predicted surface concentrations of NO,

NO 2, and HNO 3. The meteorological

conditions simulated are those of July

4, 1974. The grid system used in the

simulation was 32 x 32 x 16, and a

transport time step of 15 minutes and a

chemistry time step of 1 second was

used.

This combined transport/chemistry

problem is currently being run on the

MPP. There are two choices for mapping

this problem to the MPP. One method is

to perform the chemistry calculations

on the MPP and the transport part of

the calculation on the VAX. This
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Figure i. The emission of NO x at July 4, 1974 at surface.

0 100 _,

a) NOx b) HNO 3

Figure 2. Averaged concentration of July 4, 1974 at surface.
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method is currently being tested. The

other method is to perform the entire

calculation on the MPP. We are

currently developing an algorithm to

solve the sets of tridiagonal matrices

on the MPP which arise from the

transport processes.

The above test calculation indicates

the MPP is well suited for chemical

network problems where each node can

hold the entire mechanism. Current

memory restrictions limit the size of

the chemical mechanism that can be

solved in this fashion. At present

each processor can hold 32 32-bit

variables. (It is planned to increase

the storage in the near future.)

However, it is possible to handle

larger chemical mechanisms. One way is

to group processors together. For

example if 128 words are required at

each node then four processors can work

together. This in turn would reduce

the maximum number of grids possible by

a factor of 4. Another way is to make

use of the staging memory.

SUMMARY

The suitablity of the MPP computer for

calculation of chemical network

problems is under evaluation. To date

the MPP has been used to calculate a

test problem which represents one

component of a sophisticated chemically

reactive flow problem. Specifically

the set of coupled ODE-IVP's describing

the chemical reactions occuring at

16,384 spatial grid points was

calculated. This problem is ideally

suited for the MPP because by using

operator splitting, the chemistry at

each grid point acts independently from

that of the other grids (within each

transport time step). This test

calculation showed that the MPP can

perform a 100-time-step calculation 470

times faster than the same calculation

on the VAX 11/780. Also since nearly

90% of CPU time of large chemically-

reactive flow problems is spent doing

the chemistry calculations, the MPP

architecture offers great potential for

CPU savings for model applications.

Coupled transport-chemistry problems

are now being tested on the MPP.
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ABSTRACT

Classifiers are often used to produce

land cover maps from multispectral

earth observation imagery.

Conventionally, these classifiers have

been designed to exploit the spectral

(and, for multi-date data sets,

temporal) information contained in the

imagery. Very few classifiers exploit

the spatial information content of the

imagery, and the few that do rarely

exploit spatial information content in

conjunction with spectral and/or

temporal information. We are studying

a contextual classifier that exploits

spatial and spectral information in

combination through a general

statistical approach. Early test

results obtained from an implementation
o£ the classifier on a VAX-II/780

minicomputer were encouraging, but they

are of limited meaning because they

were produced from small (50-by-50

pixel) data sets. Here we present an

implementation of the contextual

classifier on the Massively Parallel

Processor (MPP) at the Goddard Space

Flight Center (GSFC) that for the first

time makes feasible the testing of the

classifier on large data sets.

Keywords: Image classification, image

pattern recognition, image contextual

analysis, parallel processing, earth

remote sensing.

INTRODUCTION

Algorithms that are currently used in

most multispectral classification

studies are unable to exploit the full

spatial resolution of the Thematic

Mapper (TM) data. Paradoxically, these

algorithms often produce more accurate

classifications if the spatial

resolution is degraded from 30 meters
to the 80 meter resolution of

Multispectral Scanner (MSS) data (Refs.

1,2), whereas humans can visually

identify features more accurately in TM

data at its original spatial

resolution. This paradox is explained

by noting that humans routinely use

spatial information to help identify

features in an image, while current

commonly used classification algorithms

do not use spatial information at all.
The contextual classifier discussed

here, however, does exploit spatial

information, and has the potential of

producing more accurate classifications

of TM imagery at full resolution.

This contextual classifier was

developed at Purdue University (Refs.

3,4), but it was tested only on

50-by-50 pixel data sets. The results

produced in these tests were

encouraging, but they were of limited
value because of the small size of the

test data sets. The classifier was not

tested on larger data sets because it

took too long to run on a VAX-II/780

minicomputer.

Testing the contextual classifier on

large data sets becomes feasible when

the algorithm is implemented on a

massively (or fine-grained) parallel

computer. Such a parallel computer is

the Massively Parallel Processor (MPP)

at the NASA Goddard Space Flight

Center. The MPP is a Single

Instruction, Multiple Data stream

(SIMD) computer which was built by

Goodyear Aerospace for the NASA Goddard

Space Flight Center (Refs. 5,6). It

consists of 16,384 bit serial

microprocessors connected in a

PREGF_zDING PAGE BLANK NOT FIL_
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128-by-128 mesharray with each element
have data transfer connections with its
four nearest neighbors. With this
architecture, the MPP is capable of
billions o£ operations per second.

A version of the contextual classifier
has been implemented'on the MPP,and a
test of the classifier on the MPP took
a total of 5 minutes to produce a
120-by-120 pixel classification. It
would take roughly 12 hours to perform
the sameclassification on a VAX-II/780
minicomputer. A 512-by-512 pixel
classification takes one to two hours
on the MPP (depending on parameter
settings), whereas it would take one to
two weeks to complete on a VAX-II/780
minicomputer. This more than a
lO0-fold improvement in running time
has been obtained with a program
written in a high level language on the
MPP (MPP Pascal) with no concerted
effort to optimize the program. We
anticipate an additional 5 to 10-fold
improvement in program running time
with a highly optimized version of the
program on the MPP.

We first present a derivation of the
contextual classification decision
rule, followed by a description of the
implementation of the contextual
classifier on the MPP. We close with
somepreliminary test results.

DERIVATIONOF THE CONTEXTUAL

CLASSIFICATION DECISION RULE

In the contextual approach to

classification, the probable

classifications of neighboring pixels

influence the classification of each

pixel. Classification accuracies can

be improved through this approach since

certain ground-cover classes naturally

tend to occur more frequently in some

contexts than in others. The

contextual classifier that we have

implemented on the MPP is the algorithm

formulated by Swain et al (Ref. 3) and

further developed by Tilton et al (Ref.

4). Here compound decision theory is

invoked to develop a classification

method which exploits spectral and

spatial information.

The derivation of the decision rule for

the contextual classifier assumes that

the data can be modeled as a

two-dimensional array of N = N 1 X N 2 of

picture elements (pixels). At each

pixel location (i,j) we are given an

n-dimensional observation X.. which is
IJ

assumed to be a random sample from a

distribution characteristic of the

fixed but unknown true classification

e... The observation X.. usually
13 1J

contains spectral and/or temporal

information about the pixel location

(i,j), and the classification eij can

be any one of m spectral or ground

cover classes from the set Q = {00i},
i = i, 2, ..., m.

In its most general form, the theory
allows for a decision rule that is

different for each pixel in the image,

and, for each pixel, depends on the

context of the entire image, X = {Xij I

i=I,2,...,NI;J=I,2,...,N2}. To obtain a

tractable decision rule, however, we

restrict the decision rule to be fixed

for the entire image, and the context

to be a subset of the entire image.

Define the context of the pixel at

location (i,j) as p-i observations

spatially near, but not necessarily

adjacent to, the observation Xij. These

p-1 contextual observations are taken

from the same spatial positions

relative to pixel position (i,j) for

all i and j. Call this arrangement of

pixels together with Xij the p-context

array. (A common p-context array for

p=5 would be the observation Xij at

pixel (i,j) and the observations at the

four nearest neighbor locations to

pixel (i,j).) Group the p observations

in the p-context array into a vector of

observations Xij = (XI,X2,...,Xp) T and

let O.. be the vector of true but
IJ

unknown classifications associated with
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the observation X... Let ep g _P and
13

Xp g (Rn) p stand respectively for

p-dimensional vectors of classes and

n-dimensional measurements; each

component of ep is a variable which

can take on any classification value

g = {mi} , i = I, 2, ..., m; each

component of Xp is a random

n-dimensional vector which can take on

values in the observation space.

Correspondence of the components of

Xij , eij , xp, and ep to the positions

in the p-context array is fixed but

arbitrary, except that the pth

component always corresponds to the

pixel being classified.

We can now develop a decision rule,

d(Xii), which assigns a minimum risk
,J

classification to pixel (i,j) based on
the vector of observations X... The

13

loss suffered by making the

classification decision d(Xii) for

pixel (i,j) when the true class is 8..
13

is denoted by k(eij,d(Xii))_ for some

fixed non-negative function k(',').

The expected average loss (or risk)

over the entire image is then

i x( ))]R e = E Ni_j @ij'd(Xij

1

= N._ E[k(Sij,d(Xij)) ]
1,J

1

- N [ [ E[k(ep,d i))]
epe_ p i,j with (Xi_

e..=8
13 p

1 _w !hk(ep,d(xP))f(xP[eP)dxP
--Y
ePg_P i,j i

8..=e
•3 p

= [ G(OP) I k(SP 'd(Xp))f(XplSp)dXp

=I [ G(eP)k(ep 'd(Xp))f(xp[Op)dxp (I)

where 8 is the pth component of ep,
D

and G(eP), the context function, is the

relative frequency with which ep occurs

in the array 8. For any array e, a

decision rule d(X p) minimizing Re can

be obtained by minimizing the integrand
of Equation 1 for each xP; thus for a

specific X.. (an instance of xP), an
13

optimal action is:

d(Xii ) = the action (classification) a

which minimizes

G(eP) k(Sp, cO f(Xij leP). (2)

In practice, a "O-I loss function" is

employed, giving

O, if 0 =
),(0, oO

i, if O # a.

Then Equation 2 simplifies, and the
decision rule becomes:

d(Xii) = the action (classification)

which maximizes

[ G(oP)f(Xij leP).

eP  P,

P

(3)

A further assumption we make at this

point is class-conditional independence

of the observations

•observation vector

f(xij Id') =

(pixels) for any

X... In this case,
13

P

]-[ f(Xk [Ok) (4)
k=l
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where Xk and 8k are the kth elements of
X.. and 0p, respectively. Evidence

13
that this is a reasonable assumption
for Landsat MSS data maybe found in
Ref. 7. Invoking the class-conditional
independence assumption, the decision
rule (Equation 3) becomes:

d(Xii) = the action (classification)
which maximizes

P

G(Op) _I f(X klSk )"
eP  P, k--1

P

(5)

Methods for estimating the context

function G(O p) are discussed in Ref. 4.

We use the "unbiased estimator", which
is the most flexible and successful of

these methods. Using this method, we

first generate an unbiased estimate of

a priori probabilities for each class

at each position in the context array

using the method described in Ref. 4.

The product of these a priori

probabilities is then calculated over

the context array, forming the unbiased

estimate of G(O p) based on one image

point. The final estimate of G(O p) is

made by averaging the individual point

estimates over a portion of the data.

Conventional multispectral classifiers

often classify into spectral classes

(spectrally differentiable subclasses)

rather than directly into the ground
cover classes of interest. The

spectral class classification is

normally renumbered in a

post-processing step to produce a

classification map in terms of the

ground cover classes. When the
classification is done in terms of

spectral classes, we assume that

f(Xklek) is a multivariate normal

density with mean vector and covariance

matrix determined by the class, 8k.

In the case where the classification is

done in terms of ground cover classes,

we assume that f(Xk[Sk) is a weighted

sum of multivariate normal densities,

viz.

f(Xklek) = [ r(<k]ek)g(Xk]<k) (6)
_kgO k

where _k is the k th spectral class,

r(<klOk) is the conditional probability

of spectral class _k given

ground cover class 8p and g(X_l_ _) is a
multivariate normal "'density "wi?h mean

vector and covariance matrix determined

by the spectral class, _k"

IMPLEMENTATION OF THE CONTEXTUAL

CLASSIFIER ON THE MPP

In both the parallel MPP

implementation, and the conventional

serial implementation, classification

directly into ground cover classes

generally requires significantly less

computer time than a classification

into spectral classes (Ref. 4). Let m

be the number of ground cover classes,

c be the number of spectral classes (c

m), and p be the number of pixels in

the p-context array. If, for example,

c=2m, a contextual classification into

spectral classes would have to consider

(2m) p context configurations, while a

contextual classification directly into

ground cover classes would only have to

consider mp context configurations. If

the classification is performed using

four nearest neighbor context (i.e.,

p=5), then the spectral class

classification would pass through the

main loop in the contextual

classification program a

(multiplicative) factor of 32 times the

number of passes that would be required

for a ground cover class
classification. Since the ratio of

spectral classes to ground cover

classes is often greater than 1.5 or

so, we normally classify directly into

ground cover classes with the
contextual classifier.
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Since the training classes are nearly

always given as a set of multivariate
normal distributions corresponding to

spectral classes (in this case, the

g(Xkl_k) in Equation 6), we must first

estimate the r(_klek) in Equation 6 in

order to calculate the f(Xkle k) used in

the contextual classification decision

rule, Equation 5. In our

implementation, the same unbiased
estimator used to estimate the a priori

probabilities for the context function

is used to estimate the r(_klek) by

limiting the classes _k to the spectral

classes associated with ground cover

class ek. This step can be considered

to be a preprocessing step, and is in

fact implemented as a separate MPP

program. In our implementation, we use
the MPP to calculate the average value

of g(Xkl_ k) for each _k over the entire

data set (the program cycles through as

many 128-by-128 pixel sections of data

as required to cover the entire data

set), and return to the host VAX-II/780

minicomputer to do the remaining serial

calculations required to compute the

estimate of the r(_klek).

The MPP implementation of the main

portion of the contextual classifier

has several advantages over a

conventional serial implementation.

The obvious advantage is that

calculations for 16384 pixels can be

performed in parallel. Less obviously,
there are further algorithmic

advantages to an MPP implementation.

The MPP parallel architecture makes it

possible to estimate the context

function, G(eP), and perform the

summation in the decision rule

(Equation 5) in one pass through the

data. In a serial implementation, the

context function G(e p) must be

estimated in one pass through a portion

of data, and the decision rule must

then be evaluated in a second pass.

This implementation feature gives a

clear efficiency advantage to the MPP

implementation. In addition, this

feature also gives a subtle accuracy

advantage to the MPP implementation

since now we can obtain unique

estimates of the context function for

each pixel. In fact, with the MPP

parallel architecture it actually costs

less to compute unique values of the

context function for each pixel than to

compute a block average value of the
context function. Because of

computation and core memory

limitations, a serial implementation is

forced to use one average estimate of

the context function in classifying a

block of data (in Ref. 4 the block

sizes ranged from 10-by-10 to 25-by-25

pixels).

Now we describe the MPP implementation

of the contextual classifier in more

detail. (For a detailed description of

the serial implementation see Ref. 4.)
Since the MPP consists of an array of

128-by-128 microprocessors, the
contextual classification is performed

on 128-by-128 pixel portions of

multispectral data. To classify an

entire data set, 128-by-128 pixel

portions of data must be cycled through

the program. (These portions of data

must overlap by a certain number o£

pixels determined by the area over
which the context function is estimated

-- see below.)

Before the program's main

classification loop is entered, the

class-conditional probabilities,

f(Xklek) , are calculated for each

pixel, and an unbiased estimate of the

a priori probabilities of each class is

made for each pixel. The main

classification loop consists of an

outside loop over the ground cover

classes '=' and an inside loop over all

possible classification vectors ep with

0 ='_' (see Equation 5).
P

Inside the main classification loop,

the context function is estimated for

the given combination of classes in the

context array. A unique estimate of

the context function for each pixel is

made from an N-by-N square of data

centered at each pixel (typically 9 < N
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25). The estimate for pixels on the

outer N/2 pixel edge of the array is
taken to be zero and no classification

is performed for those pixels. Then

the product is formed between the

context function value at each pixel

and the class-conditional probabilities

across the context array giving the

contribution to the discriminant

function for the given combination of

classes. The discriminant function for

ground cover class '_' is accumulated

by continuing the loop through all

possible classification vectors 8p with

8 ='_'. Once the discriminant
P

functions have been calculated for all

ground cover classes, the

classification result at each pixel is
taken to be the class with the maximum

discriminant function at that pixel.

The direct implementation of the
contextual classification decision rule

(Equation 5) on either a serial (e.g.

VAX-II/780) or parallel (e.g. MPP)

computer runs into a problem of

insufficient exponential range on most

computers. For example, and both the

MPP and VAX-II/780 computers, the

magnitude range of single precision

floating point numbers is approximately

0.29e-38 to 1.7e+38. (Due to

efficiency considerations and that fact

the MPP currently has no double

precision floating point implemented,

we do not consider double precision

floating point numbers here.) With

four- nearest-neighbor context (p=5),

we see from the previous paragraph that

the estimation of the context function,

G(sP), involves the multiplication of 5

numbers. Thus Equation 5 requires the

multiplication of a total of I0 numbers

together. Since each of these numbers

must lie in the range 0.0 < 1.0, and,

in practice, often lie in the range 0.0

< 1.0e-4, it is easy to underflow the
decision rule and be unable to

determine a classification for many

image pixels. This difficulty is dealt

with by evaluating the natural

logarithm (LN) of the decision rule

rather than the decision rule directly.

This trick effectively compresses the

176

exponential range. For example, an

exponential range of 1.0e+38 to 1.0e-38

is compressed to the range of numbers

+87.5 to -87.5. (This trick does cause

a loss of precision, which, however, is

of no consequence here.)

Let

P

d(_(Xij) = [ G(Op) TT f(XklO k) (7)

oPc P, k=i
E) =oc
P

and

d_(Xij) = LN(d (Xij)). (8)

Maximization of d (Xij) in Equation 5

(and 7) based on d_(Xij ) is equivalent

to maximization based on d (Xij).

Thus, the decision rule becomes:

d(Xij) = the action (classification)

which maximizes

r p Jd_(Xij)=LN )- G(Op) TT f(XklO k) •

/sP_:_, k=l

[8p =

Let

(9)

and

M (Xij) = MAX (F(Xij,sP)). (Ii)

P

[ P /F(Xij,oP) = LN G(O p) _T f(XklOk) (i0)
k=l



Then

 epc , tF(Xij'

_Op =¢t

= LN

[ EXP )]]
ep g_p, [F(Xij 'eP)-M=(Xij )+M=(Xij

Op==

= LN

EXP [M_(Xij )] [ EXP [F(Xij, eP)-Mo_(Xij ) ]
ePc p,

ep==

(

= M=(Xij) + LNI _[ EXP[F(Xij ,ep)-M (Xij)]

e_p ,

ep=OC (12)

Calculating d_(Xii) in this way insures

that at least one term of the sum does

not cause underflow, because the

exponent of the maximum term, M (Xii),

is never taken. This procedure also

makes it less likely that other terms
in the sum will underflow since the

F(Xij,oP ) tend to be large negative

numbers.

Note that Equation lO can be rewritten

as:

F(Xij, ep) =

P

LN[G(eP)] + _ tN[f(XklOk)]

k=l

(13)

When evaluated in this way F(Xij,oP),

and thus d_(Xij), do not require any

multiplications. All multiplications

are replaced by sums of natural

logarithms of the terms.

The value of M (Xi_) is not known
J

prior to the start of the summation in

Equation 12. Theoretically we could

use the maximum value of F(Xij,eP)

found up to the current term of the

sum, and reshuffle the terms of

Equation 12 when a new maximum is

found. However, the limits of the

exponential range on the MPP (approx.

1.0E+-38) make the use of this

technique impractical (an

implementation "trick" along these

lines may still be pursued, however).

The current implementation of the

contextual classifier executes a loop

over the ePg_ p once to identify the

value of M (Xii), and actually

evaluates Equation 12 in a second

execution of the loop. We have noticed
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previously in Reference 8, however,

that the following decision function

produces classifications that closely

approximate those produced by the

decision function in Equation 12:

d(Xij) = the action _ which

maximizes M (Xij),
(14a)

or in the notation of Equation 9:

d(Xi_)J = the action _ which maximizes

for all 8P_R p with e =_
p

d_(Xij)=LN (ep) TI f(XklO k) •

k=l

(14b)

This approximate version of the
contextual classifier is also

implemented on the MPP. The advantage

of approximate version is that the the

loop over the 8P_R p need be performed

only once.

One more implementation comment is

relevant here. Running on the MPP host

VAX-II/780 minicomputer is the Land

Analysis System (LAS), a package of

numerous image analysis and

manipulation programs. The LAS is

implemented under the Transportable

Applications Executive (TAE), which is

a portable, uniform, user-friendly user

interface. Since we eventually want to
make the Contextual Classifier

available to researchers from a wide

range of earth science applications, we

have implemented the Contextual

Classifier under TAE and made all image

and data files conform to LAS

standards.

PRELIMINARY CONTEXTUAL CLASSIFICATION

RESULTS

We have thus far obtained preliminary
contextual classification results on

two data sets using the MPP
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implementation of the contextual

classifier. Other results using a

VAX-II/780 minicomputer implementation

of the contextual classifier are given

in References 3 and 4.

The first data set we will discuss is a

subset of a Landsat Thematic Mapper

image from northern Virginia near the

town of Bowling Green. The data set

was developed originally for another

study (Ref. 9). This area includes
Fort A. P. Hill for which there is

extensive ground truth data. (However,

only 271 pixels of ground truth data

have been extracted and registered for

accuracy assessment. A more complete

extraction of ground truth data from

the air photography is being

considered.) Being located only 50

miles south of Washington, D. C., the

study area was readily accessible for

field investigation to the confirm

ground truth data.

According to the investigators who

originally developed this data set,

"the topography of this part of

Virginia consists of gently rolling

hills with agricultural areas along the

flood plains, marsh and swamps in low

lying areas adjacent to rivers and

streams, and forests in the upland.

The Rappahannock River runs across the

northern portion of the study area and

there are a number of streams that

drain into it. The main types of

vegetation in the area are deciduous

and coniferous trees, marsh and pasture

grasses, and an assortment of

agricultural crops. The principal

agricultural crops grown here are corn,

soybean, and wheat" (Ref. 9).

The version of the data set used in our

study is described in the original

study as the "full resolution combined

dates (full comb.)" data set. This

data set consists of registered
multi-date 30 meter resolution Thematic

Mapper data from March 5, 1984; July

29, 1982; and November 2, 1982. Bands

3, 4 and 5 of the March and November
data sets were used and bands 3 and 4

of the July data set was used. We did

not develop our own multivariate normal



model for the ground cover classes in
the scene, but instead used the mean
vectors and covariance matrices
generated by the original study for our
class-conditional density functions.
These classes were obtained through a
supervised technique resulting in
covariance matrices with generally much
less spread than covariance matrices
obtained from the commonunsupervised
clustering technique for generating the
class-conditional density functions.

(This data set was used to shake-down
the implementation of the algorithms.
Weencountered somedifficulty in our
early implementation of the algorithms
due to the fact that the covariance
matrices had very little spread.
Because of this, the entire data set
was not truly represented by the
classes chosen and some data points
produced low values for all
class-conditional density functions.
We found that simple thresholding was
not satisfactory, and had include
normalization steps in the
implementation of the unbiased
estimator. This was all complicated by
the fact that we implemented the
algorithms on the NASA/Goddard
Massively Parallel Processor which for
a time had floating-point math without
underflow and overflow detection. We
had to wait for an implementation of
underflow detection before the
algorithm worked properly. Underflow
detection maynot have been required
for covariance matrices with wider
spreads.)

For this data set we obtained an
overall classification accuracy of
79.7% (216 correct classifications out
of 271 test pixels) for the contextual
classifier. This compares to an
overall classification accuracy of
77.5% (210 correct classifications out
of 271 test pixels) for a conventional
per-pixel uniform-priors maximum
likelihood classification. This
conventional classification was
obtained using the standard BAYES
classification program in the Goddard
Land Analysis System (LAS) software
package. Weevaluated over five ground

cover classes: wetlands (and seasonal
wetlands), water, barren land, forest
and agriculture. The full
classification contains 158,105 pixels
(roughly 512 by 309 pixels), and was
performed in less than one hour (wall
clock time) on the MPP.

As mentioned earlier, the ground truth
used for deriving the classification
accuracy results for this data set
consisted of manual ground cover class
determinations at 271 pixel locations
scattered throughout the data set (see
Ref. 9). We feel that a better
evaluation of the contextual classifier
would be obtained by evaluating the
classification results against a more
extensive ground truth map. We are
pursuing an effort to develop a more
extensive ground truth map for the area
from aerial photographs that were taken
over the same time period when the TM
data was gathered.

The next data set that we will discuss
in the Anderson River airborne
Multispectral Scanner (ABMSS)data set.
This data set is a part of a SAR/MSS
data set that was acquired,
preprocessed, and loaned to us by the
Canada Centre for Remote Sensing
(CCRS), Department of Energy, Mines,
and Resources, of the Government of
Canada. This data set covers a 2.8km
by 2.Skm area in British Columbia,
Canada near the Anderson River with
terrain elevations ranging from 330 to
ii00 meters above sea level. The data
were geometrically corrected by CCRSto
the Universal Transverse Mercator (UTM)
projection at a spatial resolution of
50 meters. A pixel-by-pixel ground
cover mapwas digitized by CCRSfrom a
detailed forest cover mapprepared by
the staff of the Pacific Forest
Research Centre of Canadafrom aerial
photography and more than 20 ground
plots (Reference I0).

For this data set we obtained an

overall classification accuracy of
81.0% for the contextual classifier.

This compares to an overall

classification accuracy of 80.5% for
the standard BAYES classification
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program. We evaluated over three

ground cover classes: clearcut,

hemlock and douglas fir mix. The full

data set is 57 pixels by 57 pixels of

which the center 49 pixels by 49 pixels

were classified by the contextual

classifier (a four pixel border was

required because of the 9-by-9 pixel
window used to estimate the context

function). Both the contextual
classifier and the BAYES classifier

were evaluated over the center 49-by-49

pixel portion of the ground truth data.

We are not happy with the class mean
vectors and covariance matrices that we

developed for this data set, especially

since the original study of this data

set obtained an overall accuracy of 88_

using per-pixel classification

techniques (Ref. i0). This result was
obtained for a more difficult

discrimination task of classifying into

eight ground cover classes: douglas

fir, douglas fir mixed with lodgepole

pine, douglas fir mixed with cedar,

douglas fir mixed with hemlock, hemlock

mixed with douglas fir, hemlock mixed

with cedar, clearcuts, and bare rock.

We have contacted the Principal

Investigator for the original study,

and have arranged for obtaining the
class mean vectors and covariance

matrices that were developed for that

study. Unfortunately, the publication

schedule precludes including results

using those class means and covariances

in this paper.

CONCLUDING REMARKS

Earlier studies (Refs. 3 and 4) using

a VAX-II/780 minicomputer

implementation of the contextual
classifier obtained classification

accuracy improvements of 2_ to nearly

6_ for small 50-by-50 pixel data sets.

These classification runs generally

took 3 to 4 hours (wall-clock) to

complete. We have implemented the

contextual classifier on NASA Goddard's

Massively Parallel Processor in order

to enable the testing of the contextual

classifier on reasonably sized data

sets (e.g. 512-by-512 pixels).

180

Preliminary tests have shown that a

512-by-390 pixel data set can be

classified with the contextual

classifier in approximately one hour

(wall-clock) on the MPP. In this

implementation of the contextual

classifier on the MPP we made no

concerted effort to come up with the

most efficient implementation possible

on the MPP. Still, this relatively

inefficient implementation provides

better than a lO0-fold speed-up over a

fairly efficient VAX-I1/780

implementation of the algorithm. This

amount of speed-up is sufficient to

make it possible for the first time to

study the effectiveness of this

classifier on several different data

sets of reasonable size (e.g.

512-by-512 pixels).

The preliminary classification accuracy

results reported in this paper for the

MPP implementation of the contextual

classifier are not as impressive as
earlier results obtained from a

VAX-11/780 minicomputer implementation
of the classifier. Different data sets

were used in the earlier study. Also,

we expect that our results will improve

once certain aforementioned problems

are taken care of concerning the data

sets used, and once the contextual
classifier in run on several other well

constructed data sets.

One final note. It makes little sense

to compare the speed of the contextual

classifier as implemented on a vector

supercomputer such as a Cray to the

speed of the implementation on the MPP.

Devising an implementation on the MPP

that effectively uses the parallelism

of the MPP is very easy and natural,

whereas it would be much more difficult

to develop an implementation on a

vector supercomputer that effectively

exploits that type of parallelism.

Being such an easy and natural

implementation, the MPP implementation

lends itself much more effectively to

experimentation with the algorithm.
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ABSTRACT

Two-dimensional electrostatic simulation codes using

the particle-in-cell model are developed on the Mas-

sively Parallel Processor (MPP). The conventional

plasma simulation procedure that computes electric

fields at particle positions by means of a gridded sys-
tem is found inefficient on the MPP. The MPP simula-

tion code is thus based on the gridless system in which

particles are assigned to processing elements and elec-
tric fields are computed directly via Discrete Fourier

Transform. Currently the gridless model on the MPP
in two dimensions is about nine times slower than the

gridded system on the CRAY X-MP without consid-

ering I/O time. However, the gridless system on the
MPP can be improved by incorporating a faster I/O

between the staging memory and Array Unit and a

more efficient procedure for taking floating point sums

over processing elements. Our initial results suggest

that the parallel processors have the potential for per-

forming large scale plasma simulations.

Keywords: plasma simulation, gridded system, grid-

less system, discrete Fourier transform

INTRODUCTION

Plasma simulations have been used extensively in

space physics and fusion energy research. Although

the basic physical principles of plasma physics are well
understood, the coupled physical phenomena are so

complex that analytical studies cannot be easily car-
ried out. With the advent of powerful supercomputers,

computer simulations have been used to gain insight

into physical phenomena.

One class of plasma simulation model is the particle-

in-cell (PIC) model, which treats the plasma at the

microscopic level by following the motion of a large
number of particles. We have been using a particle-in-
cell code to examine the instabilities of natural elec-

tron beams observed by the NASA Dynamics Explorer

satellite at high altitudes (> 10,000 km) (Ref. 1). The

simulation code typically uses over 400,000 simula-

tion particles and a 32 x 32 spatial grid in the two-

dimensional problem. It is difficult to improve the

spatial resolution with our available resources, because

a finer spatial grid would sharply increase the simu-

lated particle number and would require unreasonable

computer time. Likewise, three-dimensional simula-

tions are beyond our capability at the present time.

Buzbee (Ref. 2) examined the parallel properties of

particle codes for fusion studies and concluded that

a large percentage of plasma simulation programs can
be processed in parallel. We investigated potential im-

provement in two-dimensional and three-dimensional

plasma simulations by carrying out simulations on the

Massively Parallel Processor (MPP).

Particle-in-cell simulation models have been developed

for the parallel-architecture CHI computer by Dawson

et al. (Ref. 3). Their results indicate that the system
is cost-effective and offers a significant improvement

in performance. The CHI plasma simulation system

consists of six microprocessors: one array processor,
one macro-processor and four I/O processors. The ar-

ray processor does most of the calculations, the I/O

processors move data around and the macro-processor

handles scheduling and control. The parallel process-

ing among these processors accounts for most of the

performance advantage of the system. Buzbee (Ref.

2) has implemented a particle-in-cell code on two par-

allel processing devices-the UNIVAC 1100/84 and the
Denelcor Heterogeneous Element Processor (HEP); re-

sults from these two parallel processors demonstrated

that a large percentage of the total computation can

be done in parallel.

For these previous simulation models, the number of

parallel processors is less than eight. Plasma simu-
lation models have not been developed for a single-

instruction-stream and multiple-data-stream (SIMD)

processor like the MPP which has 16,384 arithmetic

processors configured as a 128 x 128 array. Without
knowing how to take advantage of the unique struc-

ture of the MPP, we first attempted to transform our
current particle code to run on the MPP. As might

be expected, we encountered difficulties in achiev-

ing good performance on the MPP using the particle
code optimized for the vector computer CRAY. Before
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discussing the difficulties and the new approach, we

present some background on the procedures of plasma
simulation models.

PARTICLE-IN-CELL MODEL

The particle-in-cell simulation code usually represents

the plasma as a large number of computational par-
ticles (usually greater than 100,000 particles for each

species) which move according to classical mechanics

in the self-consistent electromagnetic fields. The two-

dimensional spatial system is then divided into fixed

spatial cells or grids on which charge densities, poten-

tials, and fields are defined. For the purposes of il-

lustration, we will discuss only the electrostatic model

which has no electric current density. In its simplest
form, the procedures of the plasma simulation are:

. computation of the charge density at cell cen-
ters. A particle is assumed to have a finite size

comparable to the cell size to reduce numerical

noise. The charge density of each cell is calcu-

lated by accumulating each particle's contribu-

tion according to its occupied area in the cell.

. computation of electric fields from the charge
density using Poisson's equation. Poisson's

equation is usually solved by using a finite-
difference scheme or Fast Fourier Transform.

. interpolation of the electric forces on the parti-
cles from the electric fields at the nearest grid
points.

. application of the electric force to advance the

particle velocities and then positions in time us-

ing a simple leapfrog scheme.

The mathematical formulas of the electrostatic model

are briefly described here. The model consists of finite-

size particles, moving in a uniform and constant mag-
netic field/3 and interacting via a self-consistent elec-
tric field E. The equations of motion are

d_/dt = (qi/mi)(ff, + _ ×/_) (1)
c

dCi/dt = _ (2)

Here _, mi and qi are the velocity, mass, and charge of
the ith particle with the center position denoted by _.

The particles have a rectangular shape with a width
A. The charge density p is then

= q,s(e- e,) (3)
i
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The shape function S(_'- _/) is 1 when both (z - zl)
and (y - Yl) are negative, and is 0 otherwise. Here z

and y are the two coordinatesof r. Poisson'sequation
is

V2¢ = -4rp(_ (4)

where ¢ is the electric potential. The electric field/_
is defined as

= (5)

We will focus on the numerical method of obtaining
the electric field /_, which is the key problem in im-

plementing plasma simulation models on parallel com-

puters. The algorithm of solving the electric field J_

from Equations (4) and (5) is usually based on Fourier

Transforms. For an infinite continuous system, the

Fourier Transforms of Equations (4) and (5) yield

E(g) = -i47rkS(k)p(k)/k 2 (6)

where E, S(]_') and p(]_) are the transformed quanti-

ties. The infinite continuous transform is defined here
as

p(/_) = / d+'p( e (7)
/.

./

An infinite continuous system has no grid; therefore,

the charge density p(k) becomes a summation over the
particle positions

p(g) = s(g) F, (8)

When the particle number is large, p(k) in Equation
(8) is generally too inefficient for computation. In-

stead a fast algorithm involving a gridded system and

Fast Fourier Transform is often used. Figure 1 shows

the flow chart of computing electric field/_(_) at the

location of particles _/ in a gridd_ed system. Because
the Fast Fourier Transform of p(k) is computed from

a small number of P(6) at the cell centers 6, the al-
gorithm is very efficient. The saving in computation

makes up for the extra steps in collecting cell charge

densities and interpolating the electric field at particle
positions.

Gridded System On the MPP

Plasma simulation models using grids have been tested
on several parallel computers and found to be feasible

(Refs. 2-3). Our first plasma simulation model on the

MPP therefore uses the gridded system. The program
assigns a particle to each processing element in the

MPP. Because the Array Unit has 16,384 processing
elements, the program updates positions and veloci-
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Figure 1. Flow chart of computing electric fields in
the gridded and gridless systems.

ties of 16,384 particles at the same time. However,

we soon realized that collection of cell charge density

and interpolation of electric field at particle positions

cannot be computed in parallel or vectorized.

We investigated the possibility of performing serial

computations on the VAX, the frontend computer of

the MPP. The serial calculations involved in comput-

ing charge density at cell centers (Step 1) were com-
pleted on the average in 7 seconds on the MPP and

14.5 seconds on the VAX. A separate timing of the

number crunching portion on the MPP yields only

1.2 milliseconds, corresponding to a speed of approx-

imately 230 Mflops (millions of floating point opera-

tions). Therefore the MPP time of performing Step
1 is essentially I/O time between the staging memory

and the VAX. This approach is clearly not acceptable

because of the excessive I/O time.

The problem is somewhat alleviated on some super-
computers, which can perform fast serial computation

or do indirect indexing (Ref. 4). Some speedup in

charge collection on the MPP might be achieved by us-

ing an efficient sorting algorithm. However, the inter-

polation cannot be performed efficiently on the MPP

because it has only nearest-neighbor communication

and a small memory in the Array Unit. We finally

discarded the gridded system for the MPP and inves-

tigated the alternative approach described below.

GRIDLESS SYSTEM

The algorithm for the gridless system as shown in Fig-

ure 1 is much simpler than the gridded system. Equa-
tions (6) and (8) are used directly to compute the

Fourier Transform of electric field E(/_). No interpo-

lation is needed to obtain the electric field at parti-

cle positions. Instead, the electric field at the parti-

cle position is computed by using the inverse Discrete
Fourier Transform

E,(x,y) = dk_dkyE(k,,ky)e i(k'_'x+k''_)

= (9)
n31TI

Numerical evaluation of the integral in Equation (9) is

inefficient. The integral is thus converted to discrete

summations by assuming that the system is periodic

and has a length of L. The summation is truncated by

keeping only the low order terms; we have only kept
terms with n < 16 and m < 16 in two dimensions.

Since the right hand side of Equation (9) depends on
only the local parameters (particle position), the cal-

culation of/_(z, y) can be parallelized.

On the vector computer, the algorithm for the gridless

system is much slower than that for the gridded sys-

tem. Figure 2 shows the timing of the algorithms run
on the CRAY X-MP at the San Diego Supercomputer

Center. The algorithm of computing electric fields for

the gridless and gridded systems in one dimension is

shown in Figure 1. For particle number N = 16384,

the gridless system requires about 15 times more CPU
time than the gridded system to obtain comparable
results on the CRAY X-MP. The reason for this re-

markable difference in speed is simply that the gridless

system uses a Discrete Fourier Transform whereas the

gridded system uses a Fast Fourier Transform. The

number of operations to be performed for the gridless

system is proportional to NNk, where Nk is the num-

ber of Fourier modes. For the gridded system the num-

ber of operations is proportional to N 9 log Ng, where
N 9 is the number of cells and is usually taken to be

32 for a model. Since Nk is chosen to to be NJ2 and

N >> Ng, the gridless system has many more arith-
metic operations than the gridded system.
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Figure 2. Algorithm timing of electric field calcula-

tions in one dimension.

We next discuss the algorithm timing for the grid-

less system run on the MPP. The MPP CPU time we

present includes only processing times of the Array

Unit for arithmetic operations and the Main Control

Unit for controlling I/O. The I/O time between the

staging memory and the Array Unit is not yet included

in our algorithm timing because we have not, yet opti-

mized the I/O and learned how to determine the I/O

time accurately. It appears that the I/O time is many

times the MPP CPU time.

In CPU time required to compute electric field in the

one-dimensional gridless system, the MPP is compa-

rable to the CRAY X-MP in speed (Figure 2). The

MPP is more efficient than the CRAY X-MP for the

gridless system because it operates on 16,384 particles

simultaneously and thus the number of operations is

proportional to (N/16384)Nk. Note that the gridless

system algorithm is highly parallelized on the MPP.
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We next compare the timing of computing electric field

in two dimensions between the gridless system on the

MPP and the gridded system on the CRAY X-MP

(Figure 3). The MPP is about 24 times slower than

the CRAY X-MP in the case of 16,384 particles. When

N = 3 x 16384, the MPP is about 16 times slower than

the CRAY X-MP.

10
2-D SIMULATION

|
F-

0.1

O.Ol I I l
16384 32768 40152

PARTICLE NUMBER

Figure 3. Timing comparison of two-dimensional elec-

trostatic simulation codes between the CRAY X-MP

and the MPP. Both the gridded and gridless systems

are timed on the CRAY X-MP. Only the gridless sys-

tem is timed on the MPP.

In breaking down the CPU timing on the MPP, we

found that the MPP spends about 60% CPU time for

N = 16384 and 30% CPU time for N = 3 x 16384 in

obtaining the floating point reduction sum, which is

a summation taken over 16,384 processing elements.

The amount of time spent on reduction sums is ex-

cessive since the number of reduction sums is quite

small, only 16 for one dimension and 256 for two di-

mensions. We were able to determine that the routine

in the MPP library for summing 32 bit floating point

numbers over the processing elements had not been op-

timized. Specifically, a summation of a 32 bit parallel

array took about 2.04 milliseconds, which is about 55

times the CPU time for addition of two 32 bit floating

point numbers.

The plasma simulation procedure outlined in the

particle-in-cell model includes advancing particle posi-

tions and velocities in addition to solving the electric

field. Particle positions are checked to determine if



particles advance outside the system boundary. The

periodic boundary condition is used to adjust the po-

sitions of particles advanced outside the boundary

x= x-L ifm>L (i0)

and

y= y- L if y > i (11)

The procedure of implementing the boundary condi-

tion cannot be fully vectorized on the CRAY X-MP.
Furthermore, the MPP has an advantage over CRAY

X-MP because it can advance 16,384 particles simulta-

neously instead of 64 particles as processed by CRAY
X-MP.

Figure 3 presents the timing for the two-dimensional

electrostatic simulation procedure outlined in the

particle-in-cell model. The CRAY X-MP uses 0.2 sec-
onds CPU time for simulating a plasma of 16,384 par-

ticles, about three times the CPU time needed to com-

pute the electric field. Thus the CRAY X-MP spends

about one-third of the CPU time on Steps 1-3 and

two-thirds of the CPU time on Step 4. In contrast,

the additional CPU time needed for Step 4 on the

MPP is negligible (_, 1 millisecond).

For N = 16384, the timing ratio of the two-
dimensional electrostatic PIC code is about nine. The

ratio remains constant when N increases to 3 x 16384.

DISCUSSION

The objectiveof thisstudy isto develop an efficient

MPP program to simulate beam plasma interactions
in three dimensions. The initial results presented here

show some difficulties in reaching this goal. The effi-

cient method typically employed on the CRAY X-MP

simulates plasmas in a gridded system, first computing

electric fields at the grid points via Fast Fourier Trans-

forms and then interpolating electric fields at particle

positions. Because the MPP has only nearest-neighbor

communication and a limited memory in the Array

Unit, the gridded system is awkward and very slow

on the MPP. We have thus adopted a gridless system

that assigns a particle to a processing element and
computes electric fields at particle positions directly

via Discrete Fourier Transform. Currently, the grid-
less model in two dimensions on the MPP is about nine

times slower than the gridded system on the CRAY X-

MP. Improvements in the CPU times for the MPP are

still possible, since our MPP programs have not been
fully optimized. In three-dimensional simulations, the

MPP is expected to be much slower than the CRAY
X-MP.

It is obvious that the speedup factor for the gridless
model on the MPP relative to the CRAY X-MP is

large since the gridless model is highly parallelized.

Indeed, when the performance of the one-dimensional

gridless system on both computers is compared, the

MPP is as fast as the CRAY X-MP (see Figure 2).

However, a much more efficient method using the grid-
ded system can be adapted on the CRAY X-MP but
not the MPP.

So far we have only tested the basic ideas of the

gridless simulation model and shown that the unique
structure of the MPP is suitable for processing this

model. We have not yet completed the program for

conducting plasma simulations. One critical area un-

resolved is the transfer of diagnosis quantities from the

MPP to the VAX for post processing. In order to min-

imize the total run time, the program being designed

will process I/O between the staging memory and the

VAX in parallel with the Array Unit (Figure 4). The

VAX MPP

I

I [ '8TART I
!

!

PROGRAM _ I

INWIALIZAT_NI/_G_/I

L,END J_ YES

I F°"c"I

YES

I
i/

!

DIAGNOSTIC8

Figure 4. Program design of the plasma simulation
code
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simulation diagnosis usually needs to examine only a
portion of particles for about every hundred time steps

or longer. We estimate that the MPP uses about 2.5

seconds to transfer positions and velocities of 16,384

particles. Simulating 16,384 particles in one hundred

time steps, the Array Unit will spend about 200 sec-

onds, which is more than enough time to output the

diagnosis results. The program will check to see that

the I/O is completed before computations continue.

These features of our program should ensure that the
I/O time between the staging memory and the VAX

will not contribute significantly to the total run time.

We have compared only the CPU time between the

MPP and the CRAY X-MP. As mentioned before, the

I/O time between the staging memory and the Array
Unit is not yet timed. Since the I/O is very slow, the

MPP performance is misleading without considering

the I/O. By simulating only a small number of par-

ticles (N < 49152), we do not need to use staging
memory. Plasma simulation for realistic problems will

have many more particles than were used here. Be-

cause the Array Unit has a very limited memory (32

floating point words), it is necessary to transfer tempo-
rary variables to the staging memory. Our preliminary

estimates indicate that tansferring a parallel array be-

tween the staging memory and the Array Unit takes

from 35 to 200 milliseconds. The I/O time is very

slow and highly variable because the I/O initiated by
the standard MPP routines is controlled by the fron-

tend VAX computer. Recently we learned that the

I/O time can be reduced by using efficient routines

without involving the VAX. But the number of I/O

operations for using the staging memory as auxilliary

memory for the Array Unit is estimated to be at least

3000 for N = 3 x 16384. Unless the I/O speed is im-

proved significantly, we do not believe that the MPP
can compete with the CRAY computers in speed.

Another difficulty with the plasma simulation on the

MPP is the floating point reduction sum over 16,384
processing elements. We were unable to investigate an

efficient algorithm for computing the reduction sum,

but were told that the current algorithm can be im-

proved considerably (private communication with E.

Seiler).

Having mentioned the disadvantage of the MPP, we

feel it is only fair to discuss some advantages of the

gridless model on the MPP. Implementation of the

simulation procedure is simplified by assigning a par-

ticle to a processing element (see flow chart in Figure

1). Without using the grid, the simulation code also

avoids numerical noises due to the grid. Finally, little
effort is needed to extend the code to three dimensions.
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Tile experience of developing plasma sinmlation codes

on the MPP has proved to be more challenging than

anticipated. Our original attempt, implementing the

conventional particle-in-cell code on the MPP, was

fruitless. Because we assigned particles to process-

ing elements, we encountered the difficulty of indirect

addressing in the interpretation of forces at particle

posistions from the nearest-neighbor grid points. The

MPP currently cannot address indirectly other pro-
cessing elements. Indirect addressing can be avoided

in the gridded system if the cells are mapped to pro-

cessing elements (Ref. 5).

We have investigated the gridless system approach
that uses extensive parallel computation and mini-

mal communication among parallel processors. Our

results so far indicate that the MPP, with improve-

ments in both hardware and software, might be ac-

ceptable for large scale scientific computation. The

needed improvements include a faster I/O between the
staging memory and the Array Unit, more memory in

the Array Unit, and a more efficient procedure for the

reduction sum. With these improvements the gridless

system of particle simulations has the potential to be a

useful and cost-effective method for simulating plasma
phenomena on parallel computers.
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ABSTRACT

Free-electron lasers (FELS) are of

interest because they provide high

power, high efficiency, and broad

tunabillty. FEL simulations can

make efficient use of computers of
the MPP class because most of the

processing consists of applying a

simple equation to a set of

identical particles. A test version

of the KMS Fusion FEL simulation,

which resides mainly in the MPPs

host computer and only partially in

the MPP, has run successfully.

KEY WORDS: laser simulation, free-

electron laser, massively parallel

processing

radiation wavelength. This leads to

coherence and high power. Gain,

power at saturation, coherence,

bandwidth, and other aspects of

laser performance depend on the

details of the interaction between

the electrons and the fields.

Total Wiggler Magnets Partial
Reflector

Reflector

Figure I. Conceptual FEL

INTRODUCTION

Free-electron lasers (FELS) have

demonstrated high power output, high

efficiency, and broad tunability
from the microwave to the visible

spectrum [I]. One-dlmensional

analyses, in large part, have guided

the development of FELS to this

point. As experimenters strive to

optimize performance, the importance

of more detailed analyses is

increasing.

An FEL produces radiation when a
relativistic beam of electrons

passes through a periodic static

transverse magnetic field (the

wiggler shown in Fig. 1). The

electron trajectories are perturbed

by the radiation, and the beam
becomes bunched on the scale of the

*Now at Mission Research Corp.,

Albuquerque, NM.

SIMULATION

We simulate the operation of an FEL

by following the three dimensional

trajectories of a beam of electrons

through a wiggler. The

inhomogeneous wave equation for a

particular mode is used to update

the amplitude and phase of that

mode; the radiation produced at a

number of discrete frequency

channels is calculated to determine

the gain as a function of laser

frequency. The Lorentz force

equation is used to update the

positions and velocities of the

simulation electrons. Updating

particle information, according to

this simple prescription, accounts

for most of the processing time and

seems to be a task well suited to

the MPF. For serial simulations on

the KMS VAX 11/750, we restrict the

number of particles to the order of

I00. The MFP can accommodate many

more particles. Consequently we can

study a wider range of beam density
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profiles and energy distributions.
On the 11/750 we restrict the

radiation to a single mode and a few

channels. On the MPP we can use

more channels and more modes.

In principle one can structure the

simulation so as to use a small

amount of memory per processing

element (PE) and to distribute the

computational load evenly across

PEs. For the present form of the

simulation this is best done by

assigning one particle to each PE.

The particle information is stored

in the local PE memory and is

updated at each time step by the PE.

In another possible mapping to the

MPP, we could assign each PEa

unique electron-channel pair. In

this case each 32-by-32 subarray,

whose southeast corner PE is

directly readable by the master

control unit (MCU) of the MPP,

represents one frequency channel.

Each PE within the subarray is

responsible for the spatial

coordinates and velocity components

of one electron. The same set of

1024 electrons (or multiples of that

number) is mapped onto each

subarray. The radiative

contributions of the electrons to a

particular channel are computed and
summed within the channel's

subarray. The new channel

amplitudes and phases are read from

the respective corner PEs by the

MCU, which can effectively broadcast
to all PEs the field information

necessary to update the electrons'

velocities and positions. More

electrons, channels, and modes can

be handled by partitioning the

simulation into 128-by-128 pieces

each with a structure similar to the

mappings described above.

As a development strategy we elected

to make heavy use of the host-to-MPP

call capability. Routines were

converted from Fortran to MPP Pascal

one at a time starting at the lowest
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level routines. In this way errors

generated during code conversion

were more easily isolated and

corrected. A disadvantage of this
method is that the routine and

stager calls must be carefully

rewritten for each intermediate

version. A simpler software

interface between the MPP and its

host, a friendlier debugger, and

more PE and MCU memory would reduce

this disadvantage and permit code

development for all users to proceed

more smoothly and more quickly.

The structure of the code is shown

in Fig. 2. The diagnostics and

field pushing routines are called

much less frequently than the

particle pushing routine (inside

circle). The latter currently run

in the MPP while the rest of the

code runs in the host. A

description of the physical model

was published earlier (ref. 2).

Hierarchical
level

Main program

I Initialization Predict(
I correct(

..... --

Diagnostics ]

Run time

Figure 2. Structure of KMS Fusion

3D FEL simulation

RESULTS

Direct comparisons between serial

runs and parallel runs with 16,384

particles have not been performed.

Instead, fewer particles were used

and the results interpreted

accordingly. Until all loops over

the particles are in the MPP, even

the parallel runs must be performed



with a restricted numberof
particles. Overall processing and
elapsed time are the only
performance diagnostics used so far.
Thus these results are qualitative.
For serial runs processing time
increases slightly faster than the

number of particles. A typical run

with I00 particles traversing a one-

meter interaction region requires a

few minutes of processing time on

the host VAX 11/780. Of the runs

involving the MPP, those employing

the code version represented by Fig.

3 are of the greatest interest. For

these runs (with 100 particle or

fewer) the processing time is a few

minutes and does not increase much

with the number of particles. This

is because fewer of the loops over

the particle index are being

executed serially. Versions with

only one or two MPP-resident

routines required three to five

times more processing time.

Only the actual application of the

incremental change in particle

phase-space coordinates (performed
by the predictor-corrector) remains

to be parallelized. Then 16,384-
particle one-meter runs should still

only require a few minutes of

processing time. An attempted
parallel implementation of the

predictor corrector required the use

of the stager for parallel-array

storage. Ironically, the extra

statements required for data swaps

pushed the size of our code beyond

the capacity of the MCU memory. The
generation of more efficient

assembly code from MPP pascal may
solve this problem. Otherwise we

may need to switch to a simpler

predictor corrector at the expense

of imposing a smaller time step.

ACKNOWLEDGEMENT

Tim Busse provided expert

programming assistance throughout
this effort.

REFERENCES

. T.C. Marshall, "Free-Electron

Lasers," Macmillan, New York,
1985.

. H. Takeda, S. Segall,

P. Diament, and A. Luccio,

"Stable 0ff-Axis Electron Orbits

and Their Radiation Spectrum in

a Helical Wiggler," Nucl. Instr.

and Methods, A237, 234 (1985).

195



N87-26554

SIMULATION OF CHARGED PARTICLE TRANSPORT ON THE MPP

James A. Earl

University of Maryland

Department of Physics and Astronomy

College Park, MD 20742

ABSTRACT

Computations of cosmic-ray transport

based upon finite-difference methods

are afflicted by instabilities, inac-

curacies, and artifacts. To avoid

these problems, we have developed a

Monte Carlo formulation which is

closely related not only to the finite-

difference formulation, but also to the

underlying physics of transport phenom-

ena. Implementations of this approach

are currently running on the Massively

Parallel Processor at Goddard Space

Flight Center, whose enormous computing

power overwhelms the poor statistical

accuracy that usually limits the use of

stochastic methods. In a Monte Carlo

simulation of rectilinear transport,

the coherent and diffusive effects that

appeared are in good quantitative

agreement with both finite-difference

and analytic calculations.

Keywords:

medium,

transport

cosmic-rays, interplanetary

magnetic fields, particle

INTRODUCTION

The diffusion idealization, which has

been almost universally invoked in

discussions of cosmic-ray transport, is

easy to treat analytically. However,

many observed phenomena give clear evi-

dence for non-diffusive effects. One

example is the so-called "scatter free"

propagation of kilovolt solar electrons

(Ref. I), which is inconsistent with

diffusion, but which can readily be

interpreted in terms of a coherent mode

of propagation. This mode is novel,

but it is just a manifestation in a

dynamic situation of non-diffusive

effects similar to those considered in

the steady-state by classical transport

theory (Ref. 2). Although these

effects have been described analyti-

cally in References 3 and 4, the theory

is very complicated. Consequently,

there is a need for reliable numerical

computations which bypass these com-

plexities and yield concrete results

suitable for comparison with observa-

tions. This paper explores such

computations based on the well-known

Monte Carlo method and compares them to

computations based upon finite-

difference methods. To limit the

number of parameters, and to focus the

discussion on computational methods,

the present discussion is limited to

the case of rectilinear one-dimensional

propagation of cosmic-rays along a

uniform magnetic guiding field on which

are superimposed random fields. This

leaves out the effects of adiabatic

focusing by non uniform guiding fields

and of convective motion of the back-

ground medium, which are very important

in the interplanetary context, but it

includes two other essential aspects of

charged particle transport. These are

a strong inhibition of transport per-

pendicular to the guiding field and a

pronounced anisotropy of the pitch-

angle scattering by random fields.

Finally, note that the magnetic fields

are visualized as static, which means
that the velocities of individual

particles are constant, and that there

is no interaction among particles in

the extremely tenuous distribution of

cosmic-rays. This situation differs

from those considered by plasma

physics, but it is closely analogous to

those treated by classical transport

theory.
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TRANSPORT EQUATIONS

Under the circumstances outlined above,

particle transport is described by

_f _f _ _f

+ = (1)

in which f is particle density in phase

space, _ is the cosine of the pitch-

angle measured with respect to the

guiding field, and z is distance paral-

lel to the guiding field. The variable

s -- Vt, where V is particle velocity,

plays the role of a temporal parameter.

The Fokker-Planck coefficient of pitch-

angle scattering is given by

(3/2X) q-1
= (2-q)(4-q) (l-u2)l_l ' (2)

where I is the mean free path, and q is

an index that measures the anisotropy

of scattering (Ref. 5).

In the discrete formulation, the con-

tinuous variables are replaced by a

three-dimensional grid whose spacings

are Az, A_, and As = VAt, and the

derivatives appearing in equation (i)

are replaced by their finite-difference

analogs. These replacements lead to

the difference equation

Af = PM+_(fM+I,Z - fM,Z)

+ Pm_i(fM,Z - fM_I,Z )

+ _M(M,Z_I - fM,Z ), (3)

which gives the change in the distribu-

tion function during a temporal incre-

ment As, and which can readily be

solved by standard numerical methods.

In the Monte Carlo formulation, the

random history of a large number of

particles is followed under the assump-

tion that the coefficients PM_/o
appearing in equation (3) can be inter _

preted as probabilities that _ will

change by ±A_ in each time step. In

this formulation, the particles move a

distance R AS in each step. This

slight difference in the evolution of z

from that described by the finite-

difference formulation, has a signifi-

cant effect that will be discussed

below.

In Figure I, the transition probabili-

ties are plotted as a function of _ for

two different assumptions about the

anisotropy of scattering. Both curves

refer to the same mean free path, I =

480. The square symbols describe

strongly anisotropic scattering (q =

1.8) similar to that occurring in

interplanetary space. Evidently, the

scattering near _ = 0, which is the

boundary between forward (_ > 0) and

backward (_ < 0) hemispheres, is much

weaker than that occurring within each

hemisphere. Consequently, this

boundary acts as a physically signifi-

cant barrier which particles find

difficult to penetrate. In contrast,

the circular symbols, which refer to

isotropic scattering (q = 1.0) similar

to that occurring in molecular colli-

sions or neutron diffusion, describe

relatively weak and nearly uniform

scattering with no feature at _ = 0.
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Figure I. Scattering probabilities for

= 480 plotted as a function of pitch-

angle cosine. The square points for

anisotropic scattering define a curve

that is qualitatively different from

the one defined for classical isotropic

scattering by circular points.
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THE ALGORITHM

To implement the Monte Carlo scheme

outlined above, each particle was

assigned an integer distance and an

index corresponding to p that lies

between 0 and 7. Because these

parameters occupy only three bytes,

there was plenty of storage for several

parallel arrays of particles. Conse-

quently, the results given below are

based on 31 arrays which contained 31 *

16384 = 507904 particles. Their fate

was determined by a single parallel

array of random integers (ranging from

-32767 to +32767) that was rotated at

each temporal step relative to the

fixed arrays of particle data, and

updated every 31 steps. To implement

changes in the pltch-angle cosine, 7

positive integers were chosen in such a

way that the probabilities of the

current random numbers being larger

than this integer are those given by

Figure I. Then the angular index was

incremented for those particles whose

current random integer was positive and

greater than the appropriate proba-

bility integer, and decremented for

those whose random integer was negative

and less than the probability integer

with its sign reversed. This approach

satisfies the basic requirement that

the probabilities of incrementing,

decrementing and leaving unchanged the

pitch-angle must add to unity. After

the pitch-angles had been updated, each

partlcle_s distance was changed

accordingly. When the desired number

of temporal steps had been carried out,

particles were binned into an array

according to distance and pltch-angle.

ISOTROPIC INJECTION

Results obtained from the MPP for

isotroplc injection of particles

uniformly distributed over pitch-angles

are presented in Figure 2 as plots

versus distance of the total number of

particles in each of 50 bins. Thls sum

over pltch-angles is a measure of the

isotroplc particle density. Because

the total number of particles was
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Figure 2. Density profiles shortly

after an isotropic injection. The

profile for isotropic scattering is

featureless, while that for anlsotropic

scattering exhibits two prominent

coherent pulses.

large, statistical errors are small

and, consequently, are not shown

explicitly. However, slight irregu-

larities in some parts of the curves

given an indication of their magnitude.

In Figure 2, the darker curve refers to

anisotropic scattering (square symbols

in Flg. i), while the lighter one

refers to classical isotropic scat-

terlng (circular symbols). These

density profiles describe a situation

very shortly after injection when the

particles have had tlme to move a

maximum distance of only one mean free

path. The former curve exhibits two

peaks, which are completey absent from

the latter one. Qualitatively, thls

manifestation of the coherent mode

appears because equal numbers of

particles become nearly uniformly

distributed in each hemisphere, while

very few particles penetrate from one

hemisphere to the other through the

region of weak scattering near p = 0.

Particles that stay together in each

hemisphere, move wlth nearly the same

velocity parallel to the field, but

statistical fluctuations of individual

velocities give rise to a peak centered

around the average displacement. Such

features are designated as coherent
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pulses. There are two of them in

Figure 2 because the injection was

symmetrical.

COIIERENT MODE

A detailed analysis (Ref. 3) predicts

that the coherent pulses discussed

above form a moving Gaussian density

profile given by

2
(z-V,t)

Noexp {-4-_, t }

F = I/2 ' (4)

(4_D,t)

Consequently, to bring out these

aspects more clearly, this section will

focus on highly collimated injection

into a region of anisotropic scatter-

ing. More specifically, it will deal

with injection of particles in the

forward hemisphere at a single value

= 0.6. Figure 3 shows a density

profile obtained under these circum-

stances, but with all other conditions

the same as in Figure 2. Evidently,

the profile is very sensitive to

initial conditions, for only one

coherent pulse appears, and, in place

of the second pulse, it is accompanied

by a broad feature that is designated
as the diffusive wake.

where V, is a characteristic velocity,

which is close to half the particle

velocity, and D, is the coefficient of

dispersion, which describes the broad-

ening that arises from statistical
fluctuations of individual velocities.

Although the isotropic injection of

Figure 2 is the most natural choice of
initial conditions, it obscures certain

important aspects of the coherent mode.
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Figure 3. Density profile after a

collimated injection, with all other

conditions the same as in Figure 2.

Evidently, profiles depend sensitively

upon conditions at injection. The

dotted curve, derived from a finite-

difference calculation, is in good, but

not perfect agreement with the Monte

Carlo results.

The dotted curve gives the result of a

finite-difference computation based on

Equation 3. The overall agreement is

excellent, but there is a slight

displacement of the coherent peaks, and

the dotted peak is slightly broader

than the solid one. The first of these

discrepancies is a trivial artifact

arising from imperfections in the

binning, but the second arises from an

important difference between the two

computations. More specifically, the

finite-difference implementation leads

to a dispersive effect which can be

described by

D# =%V(A-- ,
(5)

and the total dispersion is a super-

position of the physical effect

described by D, and the numerical

artifact described by D#. In the
present example, the condition that

ensures that physics dominates,

D, > D#, is met, for D, = 4D#, but the
numerical dispersion is large enough to

account for the slight discrepancy

between the peaks in Figure 3. To

confirm this interpretation, a finite-

difference calculation was performed

with D, = D and the expected further
broadening _f the coherent pulse was

seen. These details are significant,

for they illustrate that the Monte
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Carlo method, by virtue of the differ-

ence mentioned above in the evolution

of z, is relatively free of the arti-

facts which plague ftnite-dlfference

calculations. (See Ref. 6 for a

discussion of published work that has

been affected by such problems.)

Numerical dispersion is an especially

insidious artifact, for it leads to

results that seem plausible, but are

quantitatively in error.

ANGULAR DISTRIBUTIONS

To bring out additional features of the

coherent mode, Figure 4 shows further

results from the anisotropic injection

that was discussed above. Here, parti-

cle density has been averaged sepa-

rately over the forward and backward

hemispheres. A comparison of the two

curves reveals that particles in the

pulse are overwhelmingly collimated in
the forward direction while those in

the wake are predominantly collimated

backward. This behavior suggests that

the wake can he interpreted as parti-

cles scattered out of the pulse which

subsequently move coherently away from

it in the backward direction.
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Figure 4. Densities in the forward and

backward hemispheres under the same

conditions as in Figure 3. The

coherent pulse contains particles

moving forward. It is accompanied by a

broad wake of particles moving
backward.

Detailed angular distributions tabula-

ted at four points indicated on Figure

4, and normalized to the same total

number of particles, are presented in

Figure 5. The distribution at the peak

of the pulse (Curve B, circular points)

is essentially a mirror image of the

one at the center of the wake (Curve C,

square points). Both describe near

isotropy in one hemisphere associated

with nearly zero intensity in the

other. This distribution, which is

characteristic of the coherent mode,

adds weight to the interpretation

outlined above.

On the fringes of the density profile,

at points A and D, angular distribu-

tions (triangular points) are highly

collimated in the forward and backward

directions, respectively. In the

interplanetary context, the fringes

would correspond to the the very first

particles to arrive in a solar event,

which are particularly difficult to

describe theoretically, but which are

very important in connection with

accurate timing of events on the sun.

On the MPP, Monte Carlo methods, can

give a useful description of this phase

of solar events, but statistical fluc-

tuations limit the applicability of the

method on less powerful computers.

OAF

0.2

PITCH ANGLE COSINE:#.

Figure 5. Normalized angular distribu-

tions at locations indicated in Figure

4. These distributions exhibit a

remarkable mirror symmetry.
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THE DIFFUSION LIMIT

Eventually, scattering destroys the

strong anisotroples of the coherent

mode, and the featureless wake becomes

dominant. In this regime, where the

familiar theory of diffusion is

applicable, the density profile is

described by a Gausslan whose width is

controlled by the coefficient of

diffusion D = k V/3 (Ref. 7). Figure 6

shows a profile computed by the MPP in

this regime for Vt = 64 * k (solid

curve). Evidently, this profile is in

very good agreement with the dotted

curve which is based upon diffusion

theory.

8QO00
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Figure 6. Density profiles in the

diffusion regime. Monte Carlo results

are in very good agreement with the

dotted Gaussian derived from diffusion

theory.

CONCLUSIONS

Results obtained from the MPP with the

aid of Monte Carlo methods are equiva-

lent in every detail to those based

upon careful use of more traditional

methods, but they are less subject to

error and are closer to the physics.
These characteristics offer tremendous

advantages in the investigation of

exotic transport regimes for which no

theoretical description is available.

In particular, the formulation of

problems in which particles gain or

lose energy leads to prohibitively

large conventional computations, but

their Monte Carlo versions are not sig-

nificantly more complicated than the

one described here. We intend to ex-

ploit these advantages in the investi-

gation of two such problems: Adiabatic

deceleration of cosmic-rays due to

expansion of the solar-wind, and the

loss of energy by electrons in radio

sources due to synchrotron radiation.
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ABSTRACT

DAP systems have been in day to day use

for I0 years and a large amount of user

experience has been gained. The profile

of user applications is similar to that

of the MPP working gro,_.

bits per PE rising through 256K bits

per PE to a current maximum of IMbit/

PE giving a potential total of 128M

bytes of a 32x32 DAP-3 or }G bytes on

a 64x64 system.

Experience has shown that contrary to

expectations, highly parallel systems

provide excellent performance on so-

called "dirty problems" such as the

'physics' part of meteorological codes.

The reasons for this observation are

discussed. The arguments against

replacing bit processors with floating

point processors are also discussed.

Keywords: DAP, bit serial processors,

FORTRAN, balance.

INTRODUCTION

The DAP [2] is generally similar in

concept to MPP but differs in some

important ways. Probably the most ways

in which the DAP differs from MPP are:

b) Interconnection Network : The DAP

DAP has a 2D NEWS network similar to

that of the MPP but additionally has

a second layer network of row and

column highways. These highways

provide facilities to rapidly fetch

and broadcast data. The highways are

connected to edge registers in the

master control unit and permit data to

be selected from any set of processors,

one per row/column or broadcast to any

of the processors in the row/column.

As the same edge registers are used

for both row and column highways,

'corner turning' is also supported.

The highways are not 'buses' but are

essentially multi-way OR gates and so

give the DAP the properties of an

'associative processor' [3].

a) Memory size : The system view of

DAP has always been that of a memory

module with processing capability and

so emphasis has always been placed

upon having the largest memory it was

practical to use when the systems were

designed. Thus the 64x64 DAP when

delivered to QMC had 4K bits per PE,

but this was enlarged to |6K bits per

PE when the appropriate static RAMs

became available at reasonable prices.

User experience has shown that many

applications are very memory hungry

and there is little limit to the

memory which users can exploit. Plans

for DAP-3 have a minimum memory of 64K

c) Software Systems : An extended

FORTRAN dialect is the principal

programming language for DAP use [4].

This language supports array_processing

in data sets with either N or

2
N items on an N*N DAP. Reals with 3,

4, 5, 6 or 7 and 8 byte precisions are

fully supported, also available are

I-8 byte integers and bit variables

(logicals). The flexibility and

efficiency of the DAP-FORTRAN language

is such that users very rarely need to

use the assembler language APAL.

Indeed, the use of APAL is actively

discouraged and is only justified for

_A_JS_DLNG PAGE BLANK NO% _ FDLMED
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specialist bit manipulation algorithms

arising in such areas as low precision

image processing and customlsed-format

arithmetic routines - floating point

users never need APAL.

Above the high level system language

DAP-FORTRAN there exists a subroutine

library structured on the NAG line

containing a wide variety of useful

routines. The most widely used

routines include Random Number

generators, FFT's, tridiagonal equation

solvers, sorting routines and a number

of general utilities for data re-

arrangements. The performance of the

random number routines is particularly

spectacular [5].

USER EXPERIENCE

The DAP has been used for a wide range

of applications in the scientific

field. The range of topics is almost

identical to that covered at this

conference, so there is little point in

detailing it here. The application

area most represented is Monte Carlo

Simulations in such areas as QCD, Ising

models, molecular dynamics etc., much

to the surprise of many so-called

experts who felt that SIMD architectures

were unsuitable for Monte Carlo work.

In addition to scientific (floating

point) work, the DAP has been used for

a number of non-numeric problems

including:

- searching for large primes

- textual data abstraction

- information retrieval, and

- graphics - in particular, molecular

graphics.

The bit serial nature of the processing

elements has helped greatly in

providing the flexibility to support

more than just specialist number

crunching.
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"DIRTY PROBLEMS ARE NICEI"

The reaction of users to the DAP has

been very favourable especially to

reprogramming exercise. The

expressive power of DAP-FORTRAN has

allowed great reductions in program

size and complexity, and much higher

performance than expected for so-called

"dirty problems", i.e. problems

requiring many data dependent decisions.

There is a natural tendency to assume

that problems with many decisions are

not optimum for the DAP/MPP type of

computers as the natural way to

implement them is by parallel

conditional expressions of the type

where (temperature<freezing point)

Heat:=heat + latent heat

In DAP-FORTRAN this would be coded as

HEAT (TEMPERATURE. LT. FREEZING POINT)

= HEAT ÷ LATENT HEAT

the array indexing type is called

MASK-INDEXING.

As only some processors will update

their local values of the variables,

the natural tendency is to assume that

such code will demonstrate a lower

speed-up over 'conventional' computers

than, say, unconditional code. Our

experience is that the reverse is the

case and tasks of the above nature

demonstrate better speed-up than the

clean unconditional code!

The somewhat paradoxical result is

explained when one realises that one

is comparing the performance of two

machines rather than measuring some

absolute computing performance, and

what one is really observing is that

arrays of bit-serial processors are

better suited to "dirty code" than

are 'conventional' word based

architectures. The explanation is

simple but difficult for many people to

grasp. Bit-serial systems are

primarily optimal for dealing with

arrays of logical operations, as these



are essential single bit operations.

Arithmetic is software produced out of

lots of logical primitives, hence the

worst performance of the system comes

from pure floating point code! The

greater the proportion of a problem

that is purely logical, the greater

the potential is for an array of bit-

serial processors to outshine

architectures based on floating point

pipelines - which try to avoid

conditionals.

SYSTEM BALANCE

Some users of DAP have argued that the

system would be improved if the bit-

serial processors were replaced by

floating point units and it is not

surprising to me to find a number of

the MPP group making the same

observation. Care should be taken in

evaluating what is really being stated.

There are three arguments which can be

made against such changes.

I) 'Dirty problems' will really

become dirty as the arguments in the

previous section become invalid.

2) The parallelism in systems of equal

cost becomes much less. The cost

2
(An say mm of silicon) of a 64 bit

floating point processor is equivalent

to the cost of more than 128 single bit

PE's, hence one should realise that the

option one is really comparing is that

of say, 16K, I bit processors and 128 -

64 bit processors.

3) The inter-processor communication

rate should be somehow in "balance"

with the processor computational

capabilities. I have attempted to put

some flesh on this concept of balance

[6], which I summarise here.

For many parallel algorithms -

especially those with results producing

global properties of arrays, the

computation is carried out in a loop

structure of the form:

K:=I;

WHILE K<N begin

move some data a "distance" K;

perform a computation;

K:=K*2

END WHILE

typical of such loops are - SUM,

Product, Maximum, Minimum, FFT,

Sorting etc.

The loop is traversed log2N times

so the cost is:

(log2N) cost of a computational step +

cost of shifts 'distance' I+2+4+8 ....

On a mesh connected processor with edge

size n and dimensionality d and

d
N=n (for MPP n = 128, d = 2), the

cost of such shifts become d(n-1)*

cost of moving a data item from one

processor to its neighbout.

The Balance Factor can be defined by:

S

time for computational component

time for data movement component

if B = 1 the two costs are equal, i.e.

the system is in balance. If B>>I,

the computational time is dominating

and we would gain in performance if

more powerful processors were used.

If B<<I, data movement costs dominate

and little benefit would appear if the

processors were speeded up without

improving the data transmission speed.

G = 1/B could be called the Granuality

factor of the system as At gives an

idea of the minimum recommended number

of computational operations that must

be performed per data transmission

step.

Computation of balance factors for

systems such as MPP and DAP suggests
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that for floating point operations the

systems are in approximate balance and

no benefit would be gained by using

floating point PE's unless the

Interprocessor network were improved by

multibit highways and/or higher

dimenslonallty meshes.

The bit serial processors approach seems

to be an optimal route to providing

very highly parallel systems which can

support a large range of application

areas.

Although one could try and produce the

computer with the worlds largest MFLOP

rating by building arrays of

16
2 floating point chips, there is

little evidence that such machines

would produce even 0.1% of their

theoretical performance on anything

other than highly artificial problems

such as the Mandelbrot Set.

Holland, 1985.

6. Parkinson. D, "Organisational

Aspects of Using Parallel Computers"

(International Conference on Vector

and Parallel Computing, Loen, Norway,

June 2-6, 1986). To be published.
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ABSTRACT

Generating graphics to faithfully represent
information can be a computationally intensive

task. We will present a way of using the MPP to
generate images by ray tracing. This technique
uses sort computation, a method of performing
generalized routing interspersed with computation
on a single-instruction-multiple-data (SIMD)
computer.

Keywords: Ray Tracing, Graphic Generation, Sort
Computation, SIMD, MPP.

hardware, along with more efficient algorithms, are
needed to place this capability within the reach of
most researchers.

The most versatile and realistic means of generating
images of objects in three-dimensional space is ray
tracing. Ray tracing generates images by
simulating the movement of light rays in the three-
dimensional space containing the objects to be
displayed. Ray tracing is, however,
computationally intensive making it both slow
and expensive when the three-dimensional space
holds many complex objects and especially when
animated sequences composed of many images
must be generated.

INTRODUCTION

New ways of representing data must be developed
so that researchers can most effectively focus their

time and effort in exploring the ever increasing
volume and complexity of data that they acquire and
generate.

Since computers are not yet able to discover

knowledge for which no description has been given,
we must rely on the cognitive abilities of the
researcher to recognize undiscovered characteristics
of the data. Tools are needed that extend the senses

of the researcher deeper into the data he is studying.
Just as a telescope allows an astronomer to visually
search deep into the universe, so a computer allows
a researcher to visually study data in regions that
could not be explored through mere imagination.

Computer-assisted perception is one of the most
valuable aspects of man-machine interaction, but
the amount of information that needs to be
transferred between man and machine for human

perception to be effectively extended is huge. The
visual interface between man and machine has the

greatest potential for satisfying this requirement,
but a fast and efficient means of converting logical
information into visual information needs to be

developed. Faster and less expensive computer

An experimental computer architecture termed
single-instruction-multiple-data (SIMD) is being
investigated at NASA's Goddard Space Flight
Center. SIMD architectures show promise of
delivering enormous computational power at less
cost than other existing architectures. The Goddard
prototype, the Massively Parallel Processor (MPP),
has a computational element consisting of a 128 by
128 array of small computers.

It had been recognized that ray tracing, which
requires the use of irregular data arrangements,
could not be performed easily on the SIMD
architecture. This has changed with the recent

development of a technique called sort computation
(Ref. 1), which uses the regular SIMD computer
architecture to process irregular data arrangements
more efficiently than was previously thought
possible. With sort computation, the MPP can be
used to start developing ray tracing as a method of

rendering images of objects placed in three-
dimensional space.

Sort computation is standard sorting with a twist
provided by an enhancement to the usual
comparison step in the sort. The enhancement
performs computation during the sort. The kinds
of computation that can be performed include
aggregation and distribution type operations on sets
of data records whose key values are the same. The
routing mechanism of the sort guarantees that the
right data will be brought together at the right time

?_EDING PAGE BLANK NOT F_
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to accomplish the computation without the
programmer's a priori knowledge of where the data
was before the computation or where it will be after
the computation. This makes it easy to process
irregularly arranged data.

Our initial step toward implementing ray tracing on
the MPP was the development of a utility that
allows a researcher to view a topographical map in
three-dimensional space from any perspective. The

map is a 512 by 512 grid of elevation points.
These points are initially plotted in three-
dimensional space. Then the intersection of the
viewing screen with light rays from the view point
to each point in the map is calculated. It is then
known where all points will be seen on the
viewing screen. A sort computation operation, sort
minimum, is then used to determine which points
are not hidden by other points. Sort minimum
finds the closest point on the elevation map to the
view point for each position in the viewing screen.
Finally, the brightness values of those points that
are not hidden are copied to their proper position in
the viewing screen, using sort distribution.

This utility, run on the MPP, takes 3.5 seconds to
generate an image of 262,144 elevation points. It
was implemented on the MPP by a Code 635
summer student. Jennifer Trainor (see Figure I ,
Color Plate IV ), and is being used to view
elevation maps generated from Shuttle Imaging

Radar-B (SIR-B) images by Dr. James Strong
(Code 636).

SORT COMPUTATION

To truly understand how ray tracing is
accomplished on the MPP one must understand sort
computation. Computation in general requires
both the ability to manipulate elements of data
based on the values of other elements of data and

the ability to route these elements of data to places
where they can affect each other. Sort computation
uses sorting as a routing mechanism to support
interspersed routing and data manipulation. Sort
aggregation and sort distribution are the two basic
forms of sort computation. Sort computation is
performed on sets of records, grouped according to a
key contained in each record. Groups of records
contain only records that have been determined by
some function to be equal.

Sort aggregation generates an accumulative result

for each group of records and places this result in
one of the records. Usually it is placed in the first
record or the record with the smallest key value.
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The accumulation operation can be any operation
that is both associative and commutative. That is

any operation for which the result is not dependent
on the order of the operand or the order in which the
operations will be performed. Addition,
multiplication, and, or, and exclusive-or are
examples of valid operations.

Sort distribution copies the value of a field of a

specific record in a group into that field in every
record of that group. The record that contains the

value to be distributed contains a flag that is set to
true, indicating that this record contains the value
that is to be copied into all other records of that
group. Note that there may be more than one

record in a group for which the flag is set, as long
as they contain the same value in the field that is to
be distributed.

Sort computation is really quite simple. First, we
must view a sorting algorithm as having two parts,
the comparison of records and the routing of
records. The comparison of records results in a
determination of which of two records being
compared is larger. The routing of records takes the
result of the comparison and determines where each

of the records are to go for their next comparison.
Thus, the sort can be viewed as a routing routine
and a comparison routine, where the routing routine
calls the comparison routine when necessary. All
sorts consist of these two parts. Sort computation

can use the routing part of any sort algorithm. The
comparison routine is replaced depending on what
type of computation is to be performed.

The routing routine only determines the order in
which the record will end after the sort is through,
not how they will be modified. The comparison

routine contains all the code that makes any sort
computation different from another in terms of how
the contents of the records are changed. The
comparison routine has two functions. One
function is to determine if the two records being
compared are in the same group, generally whether
or not their keys are equal, and whether a record
from one group will come before or after a record
from another group. The other function is to
modify the records if they both belong to the same

group.

SORT AGGREGATION

Pseudo code will be used to describe the following
algorithms. The expression "A[5].(B,C,D)" will
define an array of 5 records, where each record has 3
fields, B, C, and D.



Forthesakeof simplicitywewill justshowthat
sort summingworks. Notethat theaddition
operationcanbe replacedby anyothervalid
aggregate operation. The command
"SORT(SUM,A)"performsthesortsumoverthe
arrayAdefinedby"A[n].(K,V)".

booleanfunctionSUM(AI,A2)
givenAI.(K,V)
givenA2.(K,V)
if A1.K=A2.Kthen

A1.V=A1.V+ A2.V
A2.V = 0

return(true)
end if

if A1.K < A2.K then

return(true)
end if

if A1.K > A2.K then

return(false)
end if

end function

Figure 1. Sum routine

SUM (Figure 1) is the comparison routine which
will, when used in conjunction with SORT, sum
all the values in field V of the records for which the
K fields are equal. SUM returns a value true if the
records A1 and A2 are in the correct order and false

if they are not. SUM will put the sum of all the V
fields of records of the same group in the first (or
smallest) record in the group.

The proof that this will work as described goes as
follows. Even though the keys of the records we
are comparing may be equal, SUM can affect their

ordering by returning to the routing routine the
response that either the records are in the correct

order (true) or not (false). This in effect gives order
within a group. SUM always designates the record
that contains the result of the sum as the smaller of
the two records and the larger of the two records
contains a value of zero. This means that the sum

of the value fields of the records of a group will be
contained in the record that was designated smaller
than all other records of that group. Let us assume,

however, that not all values of records in a specific
group were summed into the same record. This

means that at least two records contain only part of
the result for that group. Each one of these records
would have been designated less than all records of
that group to which it was compared. Yet, the
records which contained partial results must not
have been compared to any one of the others or the

partial results would have been summed into one of
the two records. Thus, each one of the records

would have been designated the smallest record of
the group. Since there is only one smallest record
of a group, there can only be one record that
contains the result for any group.

A routine corresponding to SUM can be writen for
any operation that is both associative and
commutative, as described above.

boolean function COPY(A1,A2)
given AI.(K,F,V)
given A2.(K,F,V)
if A1.K = A2.K then

if A2.F then

A1.V = A2.V
A1.V = true

return(true)
end if

if A1.F then
A2.V = A1.V
A2.V = true

retum(true)
endif

else

reatm(u'ue)
endif

if A1.K < A2.K then

retum(true)
end if

if A1.K > A2.K then

return(false)
endif

end function

Figure 2. Copy routine

SORT DISTRIBUTION

Sort distribution is slightly more complex than
sort aggregation. The idea in sort distribution is to
copy the value of a record in a group of records,
which has been flagged as having a valid value for
that group, to all records that do not already have
that value. The command to perform this would be
"SORT(COPY,A)", where SORT is the routing
routine, COPY is the comparison routine, and A is
the array of records. This array of n records is of
the form "A(n).(K,F,V)", where K is the key, F is
the valid value flag, and V is the value field.
COPY used in conjunction with SORT distributes
the correct value for each group to all members of
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the group (see Figure 2). Like SUM, COPY
returns a value true if the records A1 and A2 are in

the correct order and false if they are not. COPY
puts the same value in all records of the same
group or no value at all if no record of the group
had its valid value flag set prior to performing the
distribution.

The proof that distribution works is similar to that
of aggregation. Note that when two records are
determined to be in the same group and one of the
records contains a valid value, it is copied to the
other record and its valid value flag is set. This in
effect cause the record with a valid value to be

considered both larger and smaller than a record that
does not have a valid value. Thus, at the

completion of the sort computation, at least the
largest and smallest record of each group that had a
record with a valid value, will contain a valid value.
Assume that a record without a valid value
remained so after the sort was complete. If it was
either the largest or the smallest record of the

group, then there must not have been a record in
the group that had a valid value. If it was not the
smallest or the largest value of the group, either
there was no record in the group with a valid value
or it was not compared to a record in the group
with a valid value. If there is a record without a
valid value and one with a valid value in the same

group, there is such a pair that is logically next to
each other that has never been compared. If such a

pair exists, there is no way of knowing which one
is larger, since they have never been compared.
Thus, the sort must not have been complete.

Therefore, a record can only be left without a valid
value after the sort is complete if there were no
records in its group with a valid value.

RAY TRACING BY PARALLEL
RECURSIVE SUB-DIVIDING OF SPACE

Originally, ray-tracing algorithms were based on an
approach that compared each object with each ray to
determine whether the ray intersected the object.
More recently, the viewing space has been divided
into varying size regions depending on how many
objects are in the region (Ref. 2-6). If the region
has too many objects in it, it is divided into

smaller regions. The rays are traced through the
regions until they intersect an object. This sub-
dividing of space is done prior to the actual ray-
tracing. The collection (a hierarchy) of regions is
stored as a structure to be searched during the actual

ray tracing.
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We recursively subdivide space during ray tracing;
therefore we do not have to either store or search

the hierarchy of subdivided regions. We also do not
actually compare rays to objects to find their
intersection, but determine the intersection of

subdivided regions (cells) and rays and the
intersections of cells and objects. When divided
each cell is split into eight subcells of equal size.
If a cell does not both intersect a ray and an object
it is deleted. Thus, all further processing associated
with that cell is terminated. As each remaining cell
is subdivided into smaller cells, the only cells that
remain are those that intersect at least one ray and
one object. The cells are subdivided until the cross-
section of the subcell is smaller than some

specified fraction of the area that can be viewed
through a pixel of the viewing screen.

The position of the intersection of the object and
the ray can either be taken as the center of the cell
that they both intersect or a more accurate
determination of the intersection can be calculated

from the analytic description of the object and the
ray. Once the intersection of the ray and the object
has been determined, reflected or refracted rays may
be calculated if further generations of rays are to be
simulated, or a brightness value for the ray can be
calculated. All ray/object intersections of a
generation of rays are calculated before any
intersection of the next generation.

This is a highly parallel algorithm since there is no
interaction between processing of neighboring
cells. The only global processing required is the
determination and deletion of all cells that do not

intersect both a ray and an object.

The algorithm initially starts with a set of rays and
a set of objects. This set of rays usually start at a
view point and each ray intersects a simulated
viewing screen at different pixel positions.

For the sake of this discussion, we will assume

that all computation can be contained within the
processor array. In reality data must be swapped to
and from the staging memory.

We start with an initial cell that contains all the

objects. Each processor holds the description of a
ray and an object that have no relation to each
other. First it is determined which rays intersect
the cell. These rays are then sorted to a region of
the array of processors. The remaining rays are
considered to be deleted. The same thing is done
with the objects. This makes more efficient use of

the processors when the ray descriptions are
duplicated and moved to processors not being used.
At this point there will probably be both rays and



objects left, so there will be no reason to delete the
only cell.

Each ray and object will be duplicated eight times,
moved to different processors, and paired up with
one of the eight subcells of the initial cell. For
each ray/cell pair, it will be determined if the ray
and the cell intersect. If they do not, then the
ray/cell pair will deleted. The same will be done
with object/cell pairs.

Deletion of ceils that do not intersect both a ray and
an object can be handled by the application of sort-
computation. This is done by creating two types
of records, ray/cell and object/cell, that will be
sorted together using a sort distribution operation.
Each record will consist of a key field and two flag
fields, the ray and the object flag. The key field
contains the ID of the cell that intersects the ray or
the object. The ray flag is true if the record is a
ray/cell record and the object flag is true if the
record is an object/cell record. During the sort
distribution operation all the ray flags will be anded
together for all records with the same key values.
This also happens with the object flags. Therefore
any cell that has a record that does not have both
the ray flag and the object flag set will be deleted.
This cycle of dividing cells and deleting ray/cell and
object/cell pairs is repeated until the desired
intersection accuracy has been obtained. At this
point, object descriptions are distributed to where
ray descriptions are, based on the common cells
that they intersect. The result is a list of all
intersections of rays and objects.

The actual implementation on the MPP uses a

16,384 element-wide stack stored in the staging
memory, which is manipulated within the array
memory of the MPP. The feasibility of the
algorithm was demonstrated by James Hurst on a
VAX-11/780 and is being implemented on the
MPP.

Additional work needs to done to eliminate

unnecessary computation, but this is the first step
in the parallelizing of ray tracing on a SIMD
architecture.
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ABSTRACT

The objective of this research is to develop the capability of
rapidly producing visual representations of large, complex,
multi-dimensional space and earth sciences data sets via the
implementation of computer graphics modelling techniques on
the Massively Parallel Processor (MPP) by employing
techniques recently developed for typically non-scientific
applications. Such capabilities can provide a new and valuable
tool for the understanding of complex scientific data, and a new
application of parallel computing via the MPP. A prototype
system with such capabilities has been developed and
integrated into the National Space Science Data Center's
(NSSDC) Pilot Climate Data System (PCDS) data-independent
environment for computer graphics data display to provide
easy access to users. While developing these capabilities,
several problems had to be solved independently of the actual
use of the MPP, all of which are outlined.

Keywords: Computer Graphics, Parallel Processing, Solid
Modelling, Animation, Generic Data Representation

BACKGROUND

General

Over the past several years computer graphics has been used
to display multi-dimensional (Le., greater than three) data in
support of computer-aided engineering and design, and the
film industry via the techniques of solid modelling and
animation. These techniques are, in general, very data or
application specific, and highly intensive users of computing
resources. For example, typical non-scientific applications
require almost dedicated use of computers like a Cray X-MP or
Cyber 205. To date, such technology has not been
commercially available to perform complex, scientific data
representation in a generalized and near-real-time fashion,
especially at GSFC.

The MPP, which was developed at GSFC, has the potential to
process data many times faster than a conventional
supercomputer such as the aforementioned Cray or Cyber. If
the enormous processing power of the MPP can be applied to
the generation of complex computer graphics models then the

MPP may have an important impact on the problem of
displaying and understanding of complex, multi-dimensional
scientific data sets from a variety of disciplines (e.g., space
physics, climatology, earth resources, astrophysics) for GSFC
researchers.

Many research programs at GSFC generate multi-dimensional
data sets from a variety of space and earth science disciplines
(e.g., observations of temperature as a function of latitude,

longitude, altitude and time). Because of the complexity of
such data, it has been quite difficult to gain a complete
understanding of their significance. To date, the
comprehension of the physics behind the observations has
generally been limited to the interpretation of only two- or three-
dimensional slices of the data sets of interest because of the
lack of appropriate analysis tools.

A data-independent framework for the display of multi-
dimensional data sets via computer graphics has been
established at GSFC within the NSSDC, as part of the PCDS
(Ref. 1). This framework is well-suited for the analysis and
display of complex data sets. However, the techniques for
performing such data representations beyond simple three-
dimensional slices in a useful manner exceed the current
capabilities of any computer graphics facility at GSFC. Th is data-
independent framework is supported by the NSSDC Common
Data Format (CDF), which is a data abstraction for the source-

independent storage and manipulation of data. It provides
generic access to structured data and meta-data for

applications such as data display (Ref. 2).

Candidate Applications

As a proof of concept, several candidate applications have
been selected, from which data sets of interest can be derived,

to illustrate the potential of this type of graphical representation
for scientific research. The first application is in Middle
Atmosphere Electrodynamics (MAE), in which the temporal,
spatial and spectral distribution of bremsstrahlung x-rays and
precipitating electrons during auroral events are studied. Data

sets from such observations can fill up to a 6-space model
(e.g., x-ray flux as a function of latitude, longitude, altitude,
energy and time). Current graphical analysis techniques are
limited to subset slices only, for example, spatial distribution of
flux at a specific energy level, flux versus energy, flux versus
time, etc. It is hoped that through such improved display
techniques, a better understanding of energy deposition in
the middle atmosphere can be achieved (Ref. 3-4).

A second candidate application is for the generation of
simulated mean sea surface maps from satellite altimetry to
support oceanography. Traditional display techniques for
satellite altimetry cannot show the very subtle variation in the
mean sea surface, which relect the composition of the
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lithosphere, and hence, the ocean oathymetry. Solid
modelling techniques with appropriate light shading applied to
these data have the potential to highlight the detailed structure
of the sea surface, in which the light source simulates the
action of the active altimeter. It is hoped that through such
improved display techniques, a comparison of sea surfaces
with ocean bathymeW and gravity fields can be achieved.

Other candidate applications can be derived from the multitude
of large, complex data sets managed by the PCDS, whose
conventional display techniques are inadequate for some data.
In addition, data derived from the LANDSAT Thematic Mapper,
could be displayed using solid modelling techniques, when
merged with topographic map data.

Representation Methodologies

The NSSDC provides techniques for the conventional
representation of arbitrary data, stored in a CDF, in a data-
independent fashion, through the PCDS. For one-
dimensional data, the display of a histogram would be an
appropriate way of illustrating the data. For two-dimensional
data, the conventional x-y plot would be appropriate, or a three-
dimensional histogram. For three-dimensional data, contour
plots, three-dimensional wire-frame or surface diagram, three-
dimensional scatter diagram (Le., x-y-z plot), or a color or gray-
scale image would be appropriate. In any of these
representation schemes, the use of different coordinate
systems or projections may be applied (e.g., cartesian versus
polar coordinates, Mercator versus Cylindrical Equidistant map
projections, perspeclJve versus orthographic viewing) (Ref. 7).

However, to represent data of greater than three dimensions,
as might be available in any of the aforementioned applications,
new representation techniques must be developed, in four
potential areas. First, for the animation of histories of three-
dimensional displays, one would apply any of the conventional
three-dimensional representation schemes on a large
sequence of the three-dimensional data with respect to some
fourth dimension. This concept can be illustrated for an
example of global temperature distributions, in which five
dimensions of data are available. The first three dimensions are

latitude, longitude and altitude, in which this spatial information
can be modelled into a three-dimensional wire-frame display.
Next, the wire-frame can be filled by a color spectrum, which is
mapped to the variation in temperature (i.e., blue implies low
temperatures, red implies high temperatures). Finally, a
sequence of these solid models of temperature can be
brought together by animation to represent the passage of
time. Of course, the display can be enhanced by transforming
the spatial portion to a map projection of choice, adding a world
coastline overlay, graphics arts fonts for annotation, etc.

A second type of data representation, would be in the area of
remote sensing scene simulation, in which a complex
geometry of instrument movement is used to collect data of
interest. This geometry could be combined with the data itself
into a complete display that illustrates the nature of the
observation geometry at a particular instant or configuration
with the appropriate data. A third type of representation would
apply to some remotely sensed data that is acquired through
active rather than passive sensors, as with radar mapping.
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Light shading techniques can be used to simulate the
characteristics of the active sensor with the resultant
observations illustrated as a solid model illuminated by such a
light source. A fourth area of data representation techniques,
would be for the realistic rendering of remotely sensed data, in
which the data of interest is combined with other information to
provide sufficient visual cues to help in the understanding of
the data. An example of this would be the warping of a
classified LANDSAT scene to a topographic map registered
over that scene into a three-dimensional solid model.

CONCEPT

This research is motivated out of several factors, one of which,

obviously, is the need to provide to the NSSDC community,
the ability to display complex, multi-dimensional data sets.
However, the NSSDC lacks any significant computational
resources, especially for graphics, so an alternative outside of
the NSSDC had to be found. Why was the MPP chosen?
- essentially because it is there. As mentioned eadier, the MPP
has enormous computational potential, which could be applied
to graphics. When this work began, the feasibility of
developing appropriate parallel algorithms for the MPP was not
known. In addition, the configuration of the MPP hardware and
software, in principal, allowed it to be the only large-scale
computational resource available that is appropriate for its use
as a background geometry engine for interactive graphics
applications. As it turned out the MPP's hardware and software
configuration is not appropriate for such applications, which is
discussed below, but no alternatives have yet to become
available.

APPROACH

In order to provide an operational capability at the NSSDC to
enable users of the data that it supports to display complex
data, a systematic approach was developed. The steps in this
approach were as follows, but not necessarily pursued in the
enumerated order:

• Augment the NSSDC Computer Facility (NCF) with
appropriate commerical hardware and software to enable
NSSDC software systems to display graphics models.

• Select and prepare candidate data sets within the
PCDS via the CDF.

• Devise multi-dimensional representation

methodologies appropriate for the candidate applications.

• Develop custom software to link the PCDS to new
commerical hardware and software.

• Study feasibility of using the MPP for generation of

graphics models.

• Develop modelling algorithms on the MPP.

• Link MPP model generation with data display and
management in the PCDS

• Study and analyze candidate data sets.



This step-wise approach was adopted, so that a useful
capability could still be applied to the NSSDC, even if one or
more of the steps failed.

ACCOMPLISHMENTS TO DATE

In the implementation of the approach outlined above, the
following achievements have been made:

• A development effort to extend conventional two- and
three-dimensional graphics within the PCDS data-independent
environment to that of true multi-dimensional representations,
including animation, has been completed.

• An analysis of typical geometric rendering algorithms
has been done in light of the SIMD architecture of the MPP.
Some simple graphics algorithms have been developed for the
MPP for ray tracing, calculation of surface normals, etc., and

shown to be adequate for basic geometric rendering
applications. However, for an operational environment, a
surface fitting algorithm has been developed, in which a large
sequence of arbitrary triples of data (i.e., Ix, y, z]) are sent to the
MPP, and an empirical functional relationship (i.e., z[x, y]) is
established.

• An extensive survey of the advanced computer
graphics workstation market has been conducted, which led to
the competitive procurement of a Megatek Merlin 9200, which

has been integrated into the NSSDC Computer Facility (NCF)
via its local area network and hence, SESNET, for direct
communications to the MPP. Figure 1 illustrates the
configuration of this hardware, and the communications links
that support the the transfer of data to and from the MPP and
the Merlin 9200.
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Rgura1. HardwareConfigurationfor MPPGraphics
at theNSSDC

• Several generic data representation methodologies
have been developed for the display of complex, geophysical
data sets, which have been implemented via the MPP and the
NCF.

• The software on the MPP and the NCF have been

integrated with the workstation environment to permit a

potential user of these advanced graphics techniques to ea_ 'y
get at and work with data of interest. Basically this has involve0
the tying of these display techniques on the MPP with the
PCDS in a transparent fashion, and the establishment of a user-
friendly environment for these tools. Figure 2 illustrates the
configuration of this software in the NCF environment, in which
several NSSDC software systems access a generic graphics
system for data representation, and utilize the Merlin 9200 as
well as other graphics hardware for actual displays.
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Rgura2. SoftwareConfigurationfor MPPGra _tlcsatthe
NSSDC

• Some candidate data sets have been identified from

which complex, graphics models have been generated, in the
areas of solar-terrestrial physics, climatology, and
oceanography.

MPP ALGORITHMS

Obviously, the MPP has enormous computational power, but
its SIMD architecture is really not the optimal one for graphics
modelling. In fact, efforts to utilize a parallel architecture for
computer graphics have only begun fairly recently (Ref. 8-9).
Therefore, an investigation and evaluation of different
graphical techniques was begun for the MPP. This effort
began with an examination of traditional graphics rendering
algorithms (e.g., ray tracing, depth sorting, area subdivision, z-
buffering, etc.). Some experiments were done with brute
forcing ray tracing, using the array as a z-buffer for hidden line
and surface removal to prove the feasibility of using the MPP
for graphical rendering. However, given the limitations implied
by the current hardware and software environment to support
the operational scenario, which is outlined in a subsequent
section, it was decided to utilize the MPP for only partial
rendering of the data of interest. In this situation the MPP is
used to calculate surface meshes from arbitrary data, from
which a final rendered display is generated atthe NCF.

Within this revised environment, the MPP basically performs
two functions. First, it is used to construct a three-dimensional
surface on a uniformly spaced grid of specified resolution from
a non-uniformly distributed set of arbitrary input data points.
Second, it computes vectors, which are normal to the three-
dimensional surface at each of the grid locations. The SlMD
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architecture of the MPP is used to perform these calculations
simultaneously for each grid point. Several different gridding
techniques have been implemented and tested with a random
distribution of data points, which are outlined below. Two of
the methods, which compute a local surface function for each
grid point (methods 6. and 7. below), were first implemented
on the NCF DEC VAX 8650 for testing. They were found to be
inadequate because they resulted in excessive surface
undulations. The other methods resulted in surfaces with
much better behavior. In particular, methods 4. and 5. below

seem to provide the best surface representation. An additional
method was also investigated, in which bicubic Bezier patches
were used to constructed local surfaces for each grid point
based upon the closest 16 data points (Ref. 10). However, this
method required the solution of two very complicated
simultaneous equations, which proved to be beyond the ability
of the symbolic mathematics package, MACSYMA, available on
the NCF VAX 8650 (Ref. 11). There was insufficient manpower
and funding resources to attempt to solve these equations
using an interatJve numerical approach.

Step One

The construction of a gridded three-dimensional surface from a
non-uniform distribution of arbitrary data points was attempted
via seven different techniques enumerated below:

1. Nearest Point Algorithm

The Euclidean distance between each incoming data point
(represented by an arbitrary 3-tuple [x,y,z]) of the non-uniform
distribution and each grid point is computed to find the closest
data point to each grid point of the uniform grid. Each grid
point is then merely assigned this z-value.

2. Average of All Data Points Weighted by Inverse
Distance

The Euclidean distance between each incoming data point and
each grid point is computed. Each grid point is assigned a z-
value based upon a weighted average of all of the incoming
data points, with the weights being assigned on the basis of
the distance between the data point and the grid point. The
closer points are given a higher weight than the farther points
since the inverse of the distance is used as the weight.

3, Average of All Data Points Weighted by Inverse
Squared Distance

This method is identical to method 2. except the weight is
based upon the inverse square of the distance between the
data point and the grid point.

4° Weighted Average of the 5 Closest Data Points to
each Grid Point

The Euclidean distance between each incoming data point and
each grid point is computed to determine the 5 closest data
points to each grid point. A z-value is then assigned to each
grid point based upon a weighted average of these 5 closest
points, with weighting being done with the inverse of the
distance.
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5, Weighted Average of the 3 Closest Data Points to
each Grid Point

This method is identical to method 4. except that 3 points are
used rather than 5.

6. Construction of e Hyperbolic Surface for each Grid
Point

The Euclidean distance between each incoming data point and
each grid point is computed to determine the 6 closest data
points to each grid point. A 6 x 6 matrix, A, is then constructed
for each grid point with the following basis functions:

1 x y
xy x2 y2

Using the z-values of the 6 closest points as the right-hand
side, b, the following can be established:

Ax = b, (1)

which can be solved for x, to yield the coefficients of a local
hyperbolic function. Each function is then sampled at the grid
location to generate a z-value for that point.

7. Construction of a Simple Surface for each Grid Point

The Euclidean distance between each incoming data point and
each grid point is computed to determine the 4 closest data
points to each grid point. A 4 x 4 matrix, A, is then constructed
for each grid point with the following basis functions:

1 x y
x xy

Using the z-values of the 4 closest points as the right-hand
side, b, then equation (1) for a 4 x 4 system can be utilized,
which can be solved for x, to yield the coefficients of a local
surface function. Each function is then sampled at the grid
IocalJon to generate a z-value for that point.

Step Two

The construction of a normal vector at each grid point of the
uniform, gridded three-dimensional surface calculated in Step
One is done in two steps. First, two non-colinear line
segments from each grid point on the southward and eastward
directions are constructed, which is illustrated in the schematic
below, in which the two line segments are constructed from the
extreme northwest point in a sample grid:

1 2 3

;C."
• • •



Let the label, A, designate the line segment or equivalent
direction vector, extending from the grid point (1,1) to grid

point (2,1), in this example, where the notation (row, column) is
utilized. This direction vector is formed by merely subtracting

the [x,y,z] components of point (1,1) from the [x,y,z]
components of point (2,1). Let the label, B, designate the line
segment or equivaJent direction vector extending from grid
point (1,1) to grid point (1,2). This second direction vector is
formed by subtracting the [x,y,z] components of point (1,1)
from the [x,y,z] components of point (1,2).

Second, take the cross-product of the two line segments from

each grid point. In the above illustration, this would imply A x
B, with the resultant vector being perpendicular to the plane
defined by the two line segments, A and B. This resultant
vector is the normal vector to that particular grid point, and is
used by the NCF hardware and software to render a final
display. This procedure is carried out simultaneously for each
of the grid points of the surface mesh, with the exception of
the last column and the bottom row of the grid, which require
northward and westward constructions of the line segments.

OPERATIONAL SCENARIO

The aforementioned tools have now been integrated at the

NCF in the graphics workstation environment to permit a user
to view such complex models of data via the same, simple
mechanism that a user can view data of interest in the PCDS
environment in a conventional two or three-dimensional form.
This system represents the first operational use of the MPP, in
the context of an extant user-friendly software system. Figure
3 is a schematic of the information and data flow that supports
this operational graphics capability, in the context of the
hardware and software configuration shown in Figures 1 and 2,

respectively. In this system a user creates or generates data of
interest in terms of CDF for the PCDS. A user can then create

conventional representations of two or three-dimensional
slices of the data. However, a user can also generate a solid
model representation. When that happens, the data of interest
from the CDF, and the model request are shipped over to the
MPP via SESNET, where a batch job is submitted under
interactive control at the NCF. The MPP software generates
the surface rendering, and ships it back to the NCF for final

display and rendering on the Merlin 9200. Animation is
achieved via the display of sequences of such models.

Figure3. DataFlow forMPPGrephlcl at theNSSDC

At this point any member of the MPP Working Group is cordially
invited to view this capability in action, and to evaluate its utility

to supporting their research.

MEGATEK MERLIN 9200

The Megatek Merlin 9200 is an advanced solid-modelling
graphics terminal, that is oriented around a hierarchical three-
dimensional architecture for graphics, and a distributed
processing concept. This terminal supports a 3072 x 2304
display resolution with 12-bit planes of double buffered display
memory. It is capable of processing full three-dimensional
transformations on 50,000 vectors per second or 3800 shaded
polygons per second. Within its three-dimensional graphics
capabilities it can support a data base of up to 4 MB with a
dedicated processor. Its graphics processor also supports light
shading via flat, Phong and Gouraud algorithms. It has a
separate local task processor, which can be programmed
independently from the host, supported with 1 MB of memory.
The Merlin relies on the NCF VAX 8650 as a host computer,
which communicate via a DECNET/Ethernet connection for

graphics, and conventional asynchronous communications for
alphanumerics. The Merlin also supports multiple input
devices, including three valuators, a keyboard, joystick, and
data tablet. The surfaces calculated on the MPP are

downloaded to the Merlin graphics database, and then
rendered by the Merlin itself. In this sense, the VAX 8650 acts
as a user interface, and communications handler between the
user, the MPP VAX-11/780 and the Merlin (Ref. 12).

RESULTS

This research has yielded a new operational capability to
display complex data sets in a novel fashion. At this time, the
tools are just beginning to be used to analyze space and earth
sciences data of interest. Color Plate V is an example of the
type of graphical product that the system can generate. It
illustrates the spatial and spectral distribution of gridded energy
fluxes calculated from remotely sensed x-ray counts observed
from a sounding rocket instrument during an auroral event
(Ref. 4).

Problems

While doing this work several unforseen problems arose, which
has delayed the completion of all of the proposed activities,
and has prevented the completion of the actual analysis of the
candidate data sets via their geometry, which was originally
planned for the current fiscal year. There were two major
problem areas that were encountered. The first problem is
related to the MPP itself. The MPP software environment lacks
sufficient flexibility and ease of use to permit the development
of an operational MPP-based graphics system (Ref. 13). The

"current MPP environment is only suited for the clumsy

development of one-shot code, and not for the development
of real applications systems. Therefore, a conceptual
framework for such a proper environment was developed and
implemented to permit simpler access to the MPP via a
software toolbox as a collection of procedural abstractions,
which includes a virtual memory manager, and transparent task-
to-task communications across SESNET or the Space Physics
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Analysis Network (SPANj (Ref. 14). This MPP task funded and
supervised the development of this toolbox. This software can
be made available to MPP Working Group for use in any
applications software to provide for the first time reasonable
access to the MPP's enormous computational power. The
details of this software development effort and the resultant
package is described in a companion paper to this one, A
Generic Applications Subroutine Library for the MPP by
Michael L. Gough and W. David Wildenhain (Ref. 15). Of
course, this toolbox permitted the completion of the graphics
applications.

The second major problem area was in procurement. The
acquisition process for the advanced computer graphics
workstation necessary to support this work required over a
year. This delayed the development of system-specific
software, and learning how to employ such a state-of-the-art
hardware/software system.

PLANNED FUTURE WORK:

It is expected that this work can continue in several different
areas if funding is made available. The efforts described
herein, were funded primarily by the NASAJGSFC Director's
Discretionary Fund for FY85 and FY86. However, there is no

currently available funding to continue this work, even though
it is still part of an approved MPP Working Group project.

Of course, the actual analysis of the candidate data sets should
be supported as part of any continued research effort.

However, much interest has been generated in these graphical
modelling techniques for a wide variety of space and earth
science data sets, especially those that are managed by the
NSSDC. Hence, one would like to apply these display
techniques to a number of data sets that the NSSDC manages
in a variety of disciplines. Therefore, the tools developed to
date will be turned overto the NSSDC for use in its operational
PCDS-supported research, for example.

In addition, further efforts in the exploration of computational
power of the MPP, in the context of the MPP Working Group,
should be pursued. In particular, the development of other
data representation schemes coupled with the development of
other rendering algorithms offers a number of challenging
ideas. For example, revisiting the idea of implementing surface
fitting via bicubic Bezier patches would be of great interest.

Although the implementation of these tools has been
established for the Megatek Medin 9200 hardware, it should be
recast in terms of the proposed ANSI standard for PHIGS, the
Programmer's Hierarchical Interactive Graphics Standard, to
provide computer as well as device portability, with high-level
three-dimensional functionality. This will permit the future use
of these applications in a wide variety of environments,
including other high-end graphics systems for the display and
manipulation of such models (Ref. 16).
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ABSTRACT

In pursuit of real-time animation of

computer simulated space plasma

phenomena, we have rewritten code for

the MPP. The program creates a

dynamic representation of the global
bowshock which is based on actual

spacecraft data and designed for

three-dimensional graphic output.

This output consists of time slice

sequences which make up the frames of

the animation. With the MPP, 16384,

512 or 4 frames can be calculated

simultaneously depending upon which

characteristic is being computed. The

run time has been greatly reduced

which promotes the rapid sequence of

images and makes real-time animation a

foreseeable goal. The addition of

more complex phenomenology in the

constructed computer images is now

possible and work proceeds to generate

these images.

INTRODUCTION

With several spacecraft making mea-

surements in space, the ability to

explore global phenomena is greatly

increased. However, analysis and inte-

gration of the massive amounts of data

require new techniques for gaining

insight into the optically invisible,

space plasma phenomena. Three dimen-
sional real time animation will be

very powerful tool and will allow

scientists to correlate data beyond

merely comparing static plots of multi-

ple variables looking for similarities

or dissimilarities. Traditional comput-

ing capability cannot deliver the

rapid display of sequential which

simulate "views" of the earth's plasma

layers as they change with solar wind

conditions. In our initial effort,

data from the ISEE-I and ISEEo3 space-

craft are used to create a dynamic
three-dimensional model of the earth's

bowshock. Real time animation (which

we define as a frame every images

second or less) will allow the

scientist to interactively manipulate

and verify his model. This interaction

will consist of accessing any desired

data set, changing model equations and

constants,and inspecting selected

features. At present, we think the MPP

very promising for achieving our

objectives and beyond.

PROBLEM

Animation is notoriously demanding on

memory and machine speed to acheive

realistic motion directly from the com-

puter itself. For our previous pro-

duction, we used a VAX 750 and Evans

and Sutherland Multi Picture System.

Typically, a 350 frame film took 3 1/2
hours to run. The time factor forced

us to compute the entire sequence of

data and store the bowshock variables

onto magnetic tape. Then, the images
were rendered based on the data on

tape and filmed frame by frame. The

chemical film processing took at least
a week and the film to-video conver-

sion took at least two weeks. Turn-

Around time was further increased due

to the raw data being on magnetic

tapes that were specially made and

shipped to us.
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The problem is to eliminate the
multistage process, the unacceptable
executions times, and the uncontrol-
lable multimedia interfaces between
the data input and the animated output
scene. We would like to eliminate
chemical stages altogether.

APPROACHANDRESULTS

simplified. Many assumptions are made
about solar wind delivery angle and
delay times. We were confined by low
data sampling rates and low resolution
inputs. Both the model and its
assumptions could be tested by
recycling our animation sequence
through changes in parameters and
algorithms.

Communlcations. Since our offices
are on the west coast, our
interactions with the MPPsystem must
take place through one or more
communication paths. We have relied
heavily on the Space Physics Analysis
Network (SPAN) for transferring code
and testing results. Telephone
conversations with our assigned MPP
advisors and a 7 day trip to the MPP
facility also allowed work to
progress. Wefavor SPANbecause, aside
from being charter organizers and
supporters of the system, we routinely
employ the network to obtain the satel-
lite data used as input to the graphic
models we want to animate.

Image Computation. Our initial
effort with MPPhas been to reproduce
the animation sequence already com-
pleted with the former system. A frame
of the animation represents the
Earth's bowshock which is depicted as
discrete rings. The number of rings
are determined by the data sampling
rate and the hyperbolic model. The
r i n g s a r e d i v i d e d i n t o
quasi-pendicular (green) and
quasi-parallel (blue) sections based
on local magnetic field and the normal
to the shock in the B-X-plane. The
"predicted" bowshock structure is
based on and verified by spacecraft
data from ISEE-3 (density, solar wind
parameters, magnetic field vectors)
and ISEE-I (shock structural obser-
vations). Each frame of the animation
is independent and requires reading
and solving its own set of data
values. There are 32 to 4096 values to
be calculated for each variable per
frame. Due to computational time re-
strictions, the model is very

In the MPP system, we still separate
the image computation from the display
process, but whole frames of 4096
points can now be calculated together
instead of only one point at a time.
Figure i shows how the variables can
be mapped to the MPPparallel arrays.
The variables that are related to the
32 rings per frame are calculated 512
frames at a time, others that are re-
lated to the points can be calculated
4 frames at a time. The MPPonly takes
i0 minutes to compute 350 frames (A
vast improvement from the VAX). The
majority of the time is spent storing
data to and from disk.

Image Production. With the number
crunching aspect solved, the remaining
problem is the graphics. There are no
facilities on the MPP to create the
picture. Through the SPANnetwork, the
data files from the MPPare transfer-
red to other computers (such as NSSDC)
to be rendered on local terminal.
The data files require 512 blocks
plus 384 blocks for each group of four
images. Since the graphics through the
network consumes much storage space
and takes too much time for real time
animation, it is currently part of the
test process only.

CONCLUSIONS

The capabilities of the MPPare bring-
ing us closer to the goal of inter-
active animation. The MPP and its
access through SPANallow increases in
both available data sets and model com-
plexity. Any data set can be requested
from UCLA, JPL, or other data nodes
through the network rather than by
magetic tape. With minutes rather than
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hours of computation time, the model

equations can be adjusted (and will

be in the future). With the dramatic

increase in speed realized by the MPP,

the scientist's interaction with the

data through real-time animation

becomes more than just a pipe-dream.

FUTURE

Graphic Improvements. We plan to

include raster representations. The

graphics will continue to be done by

passing the data files through the

network but we will use a local

computer to allow real time perform-

ance. An affordable means of recording

from graphic monitor to video tape is

desirable to easily preserve the re-

suits for presentation to the scienti-

fic community.

Model Improvements. As soon as

regular display of MPP-produced scenes

is implemented at TRW with acceptable

turnaround times, we shall begin

altering the parameters, assumptions,

and algorithms of our existing model

to find better conformity between pre-

dicted and measured phenomena.

Model Enhancements and Enlargements.

We will be adding complexity to our

models to allow more than two shock

structural types, several foreshock

surfaces, magnetopause depiction, and

magnetosheath dynamics.
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ABSTRACT

The ultimate aim of this project is to analyze

procedures from substantially different application
areas to discover what is either common or peculiar in

the process of conversion to the MPP. Three areas
were identified - molecular dynamic simulation, pro-

duction systems (rule systems), and various graphics
and vision algorithms. To date, only selected graphics

procedures have been investigated. They are the most
readily available, and produce the most visible results.
These include simple polygon patch rendering, raycast-

ing against a constructive solid geometric model, and
stochastic or fractal based textured surface algorithms.

Only the simplest of conversion strategies, mapping a

major loop to the array, has been investigated so far.
It is not entirely satisfactory.

Key Words:Graphics, Stochastic Surface, Constructive
Solid Geometry, Conversion Strategy, Fractal Surfaces

INTRODUCTION

Intuitively, certain procedures appear to map
easily to an array machine, and others do not. The
latter class includes those with long stretches of

inherently single-thread code, for which even incredible

speed-ups in their parallel part will produce little net
improvement, and those whose internal communication

structure is irregular, such as highly general neural
nets. The three classes to be discussed were chosen not

for their impossibility, but rather for their prima facie

differences, as well as for their presumed availability
during this work.

lvlolecular dynamics simulates the motion of

complex macromolecules, which can be shown to exhi-
bit a quite interesting ensemble of configurations. The

simulation relies upon the locality of effects, so that
each atom interacts only with a few neighbors, and

accuracy and stability are sought by using a
sufficiently small time step. The locality of interaction
and the uniformity of the calculations for each atom

appear to make this mappable to an array machine,
albeit with some significant programming work. We

intended to use some existing code which has been vec-

torized, but this is now being marketed, and we are
still discussing the possibility of using it without

violating its proprietary nature.

Rule systems invoke a branching chain of infer-

ences using a domain rule data base suitably encoded.
A rule is activated by determining that certain facts in
a fact data base satisfy its left hand side, and it exe-

cutes by making modifications to the fact data base.
Some variant of this underlies most expert systems

currently available. As it happens, the expansion of
an inference is often a highly branched tree process.

The necessary depth of a search is the discouraging
component of the process, but this is often outweighed

by a considerable breadth as well. The major
bottleneck in production systems appears to be, in

fact, not the depth of the process, but its breadth
which is necessarily invoked in passing left hand sides

against the fact data base to detect satisfied rules, a
process termed matching. Noting that, with the
broadcast facility, an array machine may function rea-

sonably well as a large associative memory, it appears

possible that rule systems could be significantly optim-
ized in an array machine. Unfortunately we have lost
the investigator who was to have pursued this line,

using an existing production system, and it has not
been followed up yet.

The final area, graphics and vision algorithms, is
represented only in the graphics area. We may plead,

citing a fairly common observation, that in fact vision
and graphics appear to be the same process run in two
different directions between an image and its descrip-

tion (Ref. 7), but in fact they are nowhere near that in
practice. A short section will address vision issues.
The bulk of the following represents graphics issues

that have emerged during our involvement with the
MPP.

POLYGON PATCHES

The description of a scene as a collection of sim-
ple patches that together describe surfaces of solids is
perhaps among the oldest of solid models, and a dis-
cussion of its aspects may be found in several

?I:_t_EDING PAGE BLANK NOT FILMED
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comprehensive references (e.g., Ref. 1). There is a con-

siderable leap between models with simple planar
patches and those with simple curved patches, this dis-

cussion treats only planar patches. The process of

mapping a patch to an array of display elements (pix-
els), which is termed scan-convcrMon, is relatively
straightforward, if tiresome, for planar patches, and
not nearly so for nonplanar patches.

To render (that is, display) a polygonal patch
requires projecting it to the two-dimensional display

surface, a simple scaling and shifting operation, and

then determining which pixels it in fact projects to.
This last operation, the actual scan-conversion, will

usually consist of counting from one boundary to the
next in pixel-sized increments. It is roughly as time

consuming as the number of pixels actually covered,
although there is also some overhead involved in set-
ting up the control parameters of the loops involved.

Polygons are as easily represented as a combination of
half-spaces, simple linear constraints, as they are by

vertices, and one form may be generated from the
other with comparable facility. A quite straighforward

array process for scan conversion may be described,
which consists of each array element testing its loca-

tion against the list of half spaces, and 'lighting itself
up' if it passes all the constraints. There is an added
advantage to working on the array, in that each pro-

cessor may serve as a 'z-buffer', keeping track of the
depth which its current pixel represents (if indeed it

has been filled). This can be simply calculated from
the 3-space plane of the polygon, and is useful when

patches overlap. If a new patch does project on a pro-
cessor at a nearer depth, it simply wipes out the previ-
ously stored value.

The simple (but effective) method of passing
linear constraints to the array, one polygon at a time,

is in fact no less onerous than it would be to pass

them to some other firmware scan-converter, the usual
process in the sequential world. The process is advan-

tageous if rather large polygons are involved, the
scan-generation process becomes a single 'multi-step',
but one is reminded that during this step most of the

array elements are not doing 'useful' work.

An alternative approach, to somehow load the

re'ray with patch definitions and let each scan generate
in parallel, confers both advantages and considerably
more work. The advantage is that an animated

sequence, where the collection of patches moves in

time, does not. require a sequential scan of the patch
data base for each new frame. The challenge is that
scan conversion is no longer as direct, a process on the

array may not be located in the pixel it is eventually

supposed to illuminate, and thus the values the process
generates must then be routed to the correct pixel. We

have concentrated on processes that map array ele-

ments directly to pixels, and the costs of a general
routing process remain to be more carefully considered.

It should be noted that the hidden surface problem is
still nicely addressed, as destination pixels may still
function as z-buffers.

The simple half-space approach corresponds to a
general methodology, unwrapping a controlling loop

and spreading it over a processor array. In the planar
patch model, the innermost loops that direct scan gen-

eration are the ones unwrapped. The outer loop,
which counts through the model data base exactly

once (since occlusion is handled by the z-buffer), is
totally determined. The inner loop in fact counts over

pixels, but in a piecemeal and unpredictably repetitive
fashion. An alternative approach is to count over pix-

els, hitting each exactly once, and for each pixel
traverse the model data base to see which surface, if
any, projects to that pixel. This is the control struc-

ture of the next rendering method to be discussed.

RAYCASTING SOLID MODELS

For complicated but man-made objects the con-

structive solid geometry (CSG) models are unsurpassed
for direct representation and conciseness. They are

particularly well-adapted to rendering by ray-tracing,
which is still the best method with which to exercise

full control over the lighting model, including shadow-

ing, matte and specular reflection, and refraction. (see,
for example, Ref. 10) In the single thread implementa-
tion, the major loop counts through all pixels, con-

structs a ray through each pixel, and determines its
intersection with the model. The outer loop, once per

pixel, can be mapped onto the processor array quite
easily, so that each element holds a different ray, and
the model may be broadcast one node at a time. The

model need be traversed only once (but see further),
which is of some modest advantage for CSG because

models tend to comprise components numbering from
scores to hundreds. However, for other models such as

oct-trees, where model traversal is more expensive, this
advantage increases.

The operation at each pixel, intersecting it with

the solid model, is directed by traversing the model,
formed as a tree, in preorder. Leaf nodes represent one

of a small set of primitives (cube, sphere, cone, torus),
interior nodes represent set combinations of their sub-

trees, which may be intersection, union, or subtraction,
and these are always binary. Each visit to a leaf pro-
duces a list of intersections, always in in-out pairs.

The various intersections are represented as a parame-
ter value along the ray, with larger values being

further from the viewer. The grazing phenomenon,
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where a ray touches an object once, can always be
forced out at this level. Each visit to an internal node

produces two such lists which must then be combined
into a single list according to the operation represented
at the node.

It would be sufficient to retain only the nearest

in-out pair if it weren't for the quite powerful set sub-
traction operation- no matter how many hits one

saves, they may all be subtracted further up the tree,
and it may turn out that one needed just the ones

thrown away. It is possible to force subtraction to be
done at low levels in the model tree, which will allevi-

ate this problem, although the general control struc-

ture remains unchanged. At any interior node in a
tree, several lists of intersections from left subtrees at

higher levels may be in effect, waiting to be combined
with right subtrees, and each list may be zero or more
intersections. There will, if empty lists are explicitly

treated, be exactly the same number of stacked lists

for each ray (processor), so that a combine operation
which mixes a current right branch intersection list
with the topmost left intersection list may be done in
parallel, with processors that exhaust their left list

simply shutting off for the duration of the combine.
Because there should be no limit on tree depth, there is
thus no limit on the stack size even if we restrict a sin-

gle intersection list to two members, thus it appears
that we sha]_l require the staging memory to stack the
lists. More onerous, since a parallel reference must be

to the same address in PE memory (and by extension

in the stager as well), it appears that stack operations
should physically relocate the entire current stack.
The solution to this problem is still under considera-

tion, and may perhaps be addressed by restricting sin-
gle lists to pairs, which may have real values or dum-
mies that indicate no intersection.

The stacking problem relates only to the traver-
sal of the model. When this has been accomplished,

only the foremost intersection matters. Any further

work to be done on that pixel consists of casting
further rays from the intersection point. We may need

to cast shadow feelers to light sources, reflected rays
from specular surfaces, or refracted rays at non-opaque

surfaces. It becomes necessary, then, to include with
all intersections in the stack the physical properties of

the object being intersected, which include color,
transmittance, specularity, and the surface normal of

the object at the intersection point. More important,

we require parallel management of these further ray-
casts.

Shadow feelers, for simple shadowing, are
straightforward since every intersection must cast to

the same light sources, combining the results of the
cast with its matte reflectance and color. At this

point, non-specular and non-transmitting intersections
may turn themselves off. Those intersections which

are specularly reflective to any degree may cast only

once, unless this second ray also encounters a highly
reflective surface. For many applications we might res-
trict the number of times this might occur. A similar
consideration applies to transmitting surfaces, which

could be treated as a pair of in-out rays with a final
modulated intersection.

The extra contributions to a pixel's value from
refracted or reflected objects need to be combined in

weighted fashion to calculate the value. This applies as
well to further recursive extensions of such feelers. At

each extension, the net contribution of a particular
feeler to the ultimate value of the original pixel, its

weight, grows less and less. Thus, we may generate as
many rays as we need, attach to each its weight, and

continue generating feelers until no new feeler has a
weight above some threshold. Each new feeler results

in the stacking of weighted values, which will generally
have zero weights for dull surfaces, and eomb_- ":_'
may be a straightforward stack opera _. [! .

this results in a doubled data requir_.lent, a,, as
many extra model traversals as extra rays are gen-

erated. The anticipated speed-up of 16,000 will not be
attained, since only a small minority of the rays, in

general, require further casting, so the majority of rays
are idle (processors doing no useful work) while

reflectors and transmitters are followed, each stage of
which requires a further sequential traversal of the
model.

One might, in the case of a really fancy lighting
model offload certain rays to other processors which

are no longer propogating, but the nature of routing
such rays appears to be infeasible, and there is in fact
little paralellism in the feelers, one must generally fol-
low another.

Interim Discussion

The half-space polygon rendering model has been

implemented and run, in highly primitive fashion, on
the MPP, largely as an exercise. The CSG raycaster is
still an incomplete paper exercise. The only conversion
methodology applied in either case is the quite

straightforward unwrapping of major control loops.

The major challenge appears to be manipulation of
model elements entirely within the array. This was

alluded to in the discussion of patch models, and is
necessary for anything like real-time manipulation, in
three dimensions, of the model. Before an actual

implementation of the ray-caster is attempted, further

study of its internalization will be done.
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While "late vision" algorithms have some relation

to graphic modelling, a major challenge at this stage is
the matching of elements of the model with the image,

an interesting problem we have yet to deal with.

Early vision procedures are of lively current interest,
and tend to be highly parallel and local computations
involved in regularization and related relaxation pro-

¢edures. (Ref. 9) These appear, intuitively, to be "easy"
procedures to map to a matrix machine. However, the

graphics .procedures we have dealt with also appear
easy in much the same sense. The initial methodology

has been to do those easy tasks and see what stum-
bling blocks in fact appear. For both patches and

CSG neither "easy" mapping has been entirely satisfac-
tory. Further, there is a strong possibility that many

algorithms may be too numerical in nature and reali-
zation, numerical computation having been our major
medium in the past. We should investigate more
efficient uses of connected bit-serial processors which
minimize arithmetic.

The final and dominant segment of this project

(Wainer) maps a different process to an array in some
detail, and has been fully implemented. The control

structure is again recursive, hut unlike the CSG traver-
sal the recursion itself, rather than a "major loop", is

mapped directly to the array. Further, some use is

finally made of the communication structure of the

array.

STOCHASTIC INTERPOLATION OF
RECTANGULAR PATCHES

Stochastic interpolation of rectangular patches as
described in (Refs. 2,3,8) is useful in generating dense
patch data from a small number of input values. In

computer graphics the method is used to create sur-
faces, textures and sky among other things (Refs. 2-

4,8). The values generated axe pseudorandom and
approximate a fractal distribution. The characteristics
of the surface are controlled by the h and scaling

parameters. Values of h near 1 give a smoother sur-
face than those near 0. The scaling parameter is used

to adjust the magnitude of the stochastic contribution
to the interpolation function. For more about frac-
tional brownian motion and its applications see refer-
ences 3 and 8.

The process begins with a parent patch whose
corner data values are given. These values may be

interpreted as altitudes or colors or some other attri-
butes which are to be interpolated across the patch.

The parent patch is repeatedly subdivided until the
child patches are of the desired resolution (ie. pixel

sized). The interpolated values are formed from the

deterministic average of neighboring data values and a

stochastic component which is determined by the
parameters and pseudorandom numbers.

A graphical depiction of the method is shown in
Figure 1. The four corners of the parent are used to
calculate the center point of the child. Side points

along an edge of the original parent use only the data
derived from the two original points which define that

edge. Side points in the interior of the original patch
use the four values from their vertical and horizontal

neighbors. By stipulating that points that lie along
the edges of the original patch depend only on the ver-
tices that define those edges, continuity between adja-

cent input patches can he guaranteed.

The stochastically interpolated values are formed

from both a deterministic and a stochastic component.

I=Idet+I, tocn (1)

Idet is the average of two or four neighboring vertices as
shown in Figure 1. The same neighbors which deter-
mine Idet are used to create a seed value for Istoch. A

pseudorandom number is selected using this seed and
is conditioned by the generating parameters h and
scale. This method of forming the seeds for pseu-
dorandom number generation assures continuity

between adjacent patches as mentioned above. To
prevent the selection of pseudorandom numbers solely

on the basis of the original parent patch's corner data
values, seed values are also provided with each original
data value. Points whose data values were given at

the start of the procedure supply seed values for I, to_h

of their dependents.

Complexity of the Process

It is easy to see that the number of patches
grows exponentially in powers of four. Even though

patches share some of the same vertices, we cannot
better the overall complexity of the process by more
than a constant factor. (Consider that each patch in

the interior has 1/4 + 1/4 + 1/4 _ 3/4 new points to
calculate: this is true in every generation. Patches on

the edge must generate 1/2 + 1/2 + 1/4 ---- 5/4 new

points.) Thus whatever sequential algorithm may be

used, its time complexity will still be at least O(4 L)
where L is the number of subdivision levels. Further-

more even though the algorithm appears inherently

parallel, the data dependencies of children on their
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parents limits the best we can do to an algorithm
which has a time complexity proportional to the

number of subdivisions or equivalently to the log base
4 of the number of final patches. The data dependen-

cies make matters even worseLfor the sequential algo-

rithm which now becomes 0 [_ 4 i ]

Mapping the Algorithm on to the MPP

First note that we can map any arbitrary rectan-
gle into a square be scaling one of its sides. For our

purposes then we treat the input patch to the subdivi-

sion algorithm as if it were a square. At each subdivi-
sion the child patches formed are also square and have
sides of length one half of their parent's side. This

geometry is ideal for the array unit which is square

and has a side length of 128 (a power of two). After
seven subdivisions the parent patch will have created

47--16384 descendants or one per MPP PE. A map-
ping using the vertices of the patches instead of the
entire patch is not so neat and after seven subdivisions

yields a 129x129 array of data values. Here we use the
mapping of patches to PEs.

Child patches must be able to obtain data from

their parents and also their siblings and sometimes
even cousins. Since a seven level subdivision will fill

each PE with a patch we will have to be able to recy-

cle PEs which were parents in earlier generations.
This may seem a lot to ask of the mesh connected
communication network of the MPP but there is a

straightforward and somewhat elegant solution.

Observe that all the child patches are dependent
solely on the algorithm's parameters and the data of

the input parent (These critters are asexual.). It is

easy to initialize all the PEs with the input patch's
data. Treat the entire array as one group of PEs

which all represent the input patch. The first subdivi-
sion will yield four new patches each of which will also

be represented by a group of PEs. Each child patch
required no communication overhead to obtain parent

data because, in reality, it already contained all of its
parent's data. Which PEs belong to which child patch
is determined by an id contained in each PE. The id

corresponds to which child patch the PE represents at
each level of the subdivision; after seven subdivisions

the id in each PE maps it one-to-one with a single
patch. Until the final subdivision, each patch is being
mapped onto a group of PEs which are redundantly

calculating the subdivision for that patch. The redun-
dant calculations are occurring simultaneously so they
incur no time cost. The benefit of this method, besides

its simplicity, is that parent data is passed onto the
children without need of the communication network.

Data routing is still used to obtain values from

neighbors. Here the term neighbor is with respect to
groups of PEs rather than individual ones. Since

groups are largest in earlier generations, communica-

tion distances are largest for them too. During the
first subdivision a routing distance across half the

array is necessary for PEs of neighboring groups to

communicate. At the final subdivision, adjacent PEs
are group neighbors so the communication distance
becomes just a single PE.

Even though the number of PE groups grows

exponentially, the number of different PE types
remains constant at four which correspond to the qua-
drants of the parent patch. Figure 2 shows how PE

groups and types map onto the array. Before subdi-
viding the first input patch, the id for each PE is
determined. This is a simple process which forms
seven 2-bit numbers from the concatenation of the row

and column indexes already present in each PE. Fig-

ure 3 identifies the PE id types with the quadrants
they correspond to. The subdivision algorithm is out-
lined in pseudocode below.

algorithm subdivide(levels:integer; h,scale:real);

Subdivide the parent patch defined by the values at its
4 corners to the number of levels given by "levels". H
and scale are the fractal h parameter and user selected

scaling factor respectively. Initializations which need
be done only once per run of the algorithm such as

valid = TRUE and the ID set up are assumed to have
already been done and are not included in this
analysis.

{ **** set up ***** }

route :-----128; { # PEs on side of PE array }

ratio :--_ 2 -h ; { from fractal h parameter }

std := scale; { user determined scaling parameter }

initflag(flag); { flag shows original (input patch data)
where true. Used in determining the
calculation of the seed for the pseudo-

random numbers used in the Ioto_h }

{ **** subdivisions **** }

FOR level := 1 to levels DO BEGIN

route := route div 2;
std := std * ratio;

center_pts(level,std);
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9 side_pts(level,route,std);
10 END

• Analysis of subdivide

The set up statements in lines 1 through 4 are
_Xecuted once in constant time no matter what the

value of levels. Initflag, initializes a parallel array of
booleans but this uses the broadcast function and so is

not dependent upon the array size. Flag is used to

mark whether or not the corner data values were given

as input (TRUE) or derived. Vertices marked as true
forward their seed values for calculation of I, toch

Flag is updated each time new data values are ealeu-
lated since the new values may replace a value that
was marked as TRUE in the previous generation.

Line 6 determines the routing distance between
neighboring PE groups. This is halved at each subdi-
vision until it reaches one at the final subdivision.

Route is used by side_pts when obtaining information
from neighboring PE groups. At line 7, std, derived

from the h and sealing parameters, is adjusted for the
next application in the calculation of I_to_h .

The lines of most interest are 8 and 9 which

compute the subdivisions in two phases: center points

and side points. Computation of the center points is
done simultaneously throughout all PE groups without

the need for shifting data. The four corner points of
the parent patch are used and these are already con-

tained within each PE. Iaet is the average of these
point values and I, toch uses the corners in the selection
of the pseudorandom number which is adjusted by the

current value of std. The time complexity of this step
will remain constant with varying levels and array
sizes.

The computation of the side points is more com-

plicated and involves shifting data in from neighboring
PE groups. Since the size of a PE group varies accord-
ing to what level is being processed the communication
time will also vary. The algorithm as described here

uses communication for the following reasons:

a. To establish if there is a valid neighbor along

a particular side.
b. To gather data from a valid neighbor.
c. To transmit shared points to a neighbor.

In each of the above, neighbor refers to a neighboring

PE group.

Since the calculation of side points is the only

step which requires communication, we shall now shed
some more details on this process. To satisfy edge

constraints, interpolates of values along an outside

edge (the edge of the parent patch) must depend ulti-
mately, only on the two corner values of the parent

patch's edge. When this holds patches can be matched
up simply by assuring that their common edge values

and generating parameters are identical. Edges not
along the outside of the parent patch use values above
and below and right and left to calculate their values.

The deterministic interpolate is the average of its

two (when on an outside edge) or four nearest neigh-
bors. Two of the neighbors are the vertices of the side

that it lies on and the other two (when four are used)
are the just calculated center points which form a per-
pendicular bisector of the side the interpolate lies on.

A sentinel is used to easily determine if the new

vertex has a valid neighbor. Define VALID to be a
parallel array of type boolean. Using the MPP broad-

cast instruction it is easy to set each bit of VALID
contained in each PE to TRUE in constant time.

Recall that attempts to shift data in from beyond the

edges of the array, read in O's (FALSE). Thus a neigh-
bor is valid only if its VALID bit is TRUE.

Each PE group first calculates its center point

then the edge interpolates. We will first discuss only
the deterministic part of the calculations. The center

point is trivial; it is merely the average of its four

corners (plus a stochastic component). The basic algo-
rithm for the deterministic edge components is as fol-
lows.

Note that the center point has already been com-

puted and its value is now stored in the corners of the

new child patches which lie at the center of their
parent patch. There are now four different types of

patches forming. The differences are based solely on
the positions of the new patches with respect to their

parents (see Figure 3). Each type is computed con-
currently with all the others like it, thus there are four

different types of edge interpolate calculations. All
these are very similar and simply correspond to the

particular edge being computed: top, bottom, left or
right.

We can characterize the time complexity of the

side point calculation step as being composed of two

components:

T,.._.,ep= T¢_c+ Tco.,.,(t.._ .... _,_,_zc) (2)

In other words, the time for the side points step calcu-

lation, T,i,u_,ep , is made up of a nonvarying calcula-
tion portion, Tea c , plus a communication time, Too,,,, ,
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The communication time is a function of what sub-

division level is being processed and of the size of the

PE array. Tcomm decreases exponentially with level

and increases by the square root with array_size.
Equation 2 can be rewritten as equation 3 by combin-
ing level and array_size to form the routing distance.

Comp ( T¢:_¢ )=L (6a)

Comp( Te.ee)=log(number of final patches) (6b)

Ta_._,_,p = T.a. + T.,m,. (.o,,t.) (3)

If we let ROUTE be the routing distance at the
first subdivision and we are using the array to process

a single input patch, then ROUTE is half the number
of PEs on the array side. While holding the dimen-

sions of the array constant, the execution time of the
algorithm will be a function of L, the number of subdi-
vision levels.

Let T,_ep be the combined times for the nontime
varying calculations done at each level of the subdivi-

sion. Thus T, tep includes Tcac from equations 2 and 3
plus the time to calculate the center points. Execution

time of the algorithm and its startup time are denoted

by Te_e¢ and T,_n,p respectively. Assuming that the
shift function is straightforwardly implemented and

communication time is directly proportional to the
number of bits being routed and the distance that they

cover, then communication time can be expressed by a
constant, Kcomm , multiplied by the distance data

must be routed (equation 4). Rewriting equation 4 to
remove the summation we can derive equation 5.

To be able to subdivide more levels using the
same algorithm, larger arrays of PEs must be built.

(It should be noted that the 128x128 array size of the
MPP is a reasonable size for graphics applications

which are still typically 512x512 pixels per screen.) If
we allow the array size to grow and continue the algo-

rithm to the maximum level, Lm= , that the array size

will allow, we can compute Lmax from ROUTE (equa-
tion 7).

Lmax=Ioge(ROUTE )+ 1 (7)

Using equation 7 and substituting into equation 5 with

L=Lm= we obtain equation 8. This gives the execu-
tion time as a function of L when the architecture of

the machine varies to always have one PE per ;patch
after the final subdivision.

Ze,ee=Tstart,pq-L*Tstepq-Kcomm *(2L--l) (8)

L --1 [ at ROUTET_=_¢= T,t,,n,p + E Totep + K_omm 2'
o

(4)

T,:,,,= Tot,,_t,,p+L *T, tep +If, omm *(2ROUTE-I) (5)

As L grows large, the third term begins to dominate.
But the number of final patches being produced is
growing as 4L Taking the limit as L grows large

shows that the parallel algorithm is still substantially

better than the sequential one (equation 9). Recall
from earlier analysis that the sequential time algo-
rithms must be at least O(4 L} .

Since ROUTE is a fixed value for a given machine, the

time complexity is not affected by it or the other con-
stant terms. The execution time complexity of the

algorithm, denoted Cornp(Te_e¢) , is directly propor-
tional to L, the number of subdivision levels. The
complexity is log the number of final patches produced

and, due to the data dependencies inherent in the

algorithm, this is the best result that can be expected.

2L 2L 1
-- = -- ---* 0 as L ---*_ (9)

4 L 2 2L 2 L

The time complexity can be decreased below L if
the data dependencies can be eliminated. This is true
if multiple input patches can be processed con-
currently. Instead of enbedding a single patch in the

array, begin by embedding four or sixteen, etc. Each
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patch is processed concurrently using a ROUTE which
corresponds to the number of PEs it covers. Slight
modifications to the identifier labels and the data sen-

tinel for boundary detection would be required to the
basic algorithm.

Conclusions

A parallel algorithm to subdivide rectangular
patches using stochastic interpolation was developed.
The algorithm was designed for mesh connected SIMD

computers and was implemented on the MPP at Nasa

Goddard Space Flight Center. For a fixed architecture
SIMD, the algorithm has time complexity of log the
number of final patches produced; this is the best that

can be expected due to the data dependencies imposed.

Timing data was collected for a nonoptimized
version of the algorithm using parallel pascal on the

MPP. Approximately 30 milliseconds of processing
time is required to subdivide one patch seven levels

into 16384 final patches. This figure compares favor-
ably to the 60 milliseconds required on the special pur-

pose STINT processor (Ref. 8). Figure 4, Color Plate
VI shows the evolution of the algorithm as it produces
a 512x512 pixel "sky" from 16 input patches. Figure 5,

Color Plate VII shows a scene composed of textures
generated similarly but using different parameter
values and color mappings.

A similar algorithm which recursively subdivides

triangles (Ref. 2) also maps well to SIMI) mesh con-
nected machines and is detailed in (Ref. 11). Parallel
machines such as the MPP, besides running existing

paradigms faster allow insights into ways they may be
expanded. A direction for future research is how the

generating parameters of this stochastic interpolation
algorithm may be increased to higher dimensions to

make the generic algorithm more powerful.
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Figure 2 : Examples of PE groups and types mapped on to the
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type corresponds to particular quadrant of the

parent patch.
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Abstract

This article describes the implementation of a reverse time migration algorithm on the Connection Machine, a

massively parallel computer. Essential architectural features of this machine as well as programming concepts are

presented. The data structures and parallel operations for the implementation of the reverse time migration algorithm
are described. The algorithm matches the Connection Machine architecutre closely and executes almost at the peek
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Introduction

This paper describes the implementation of a reverse
time migration algorithm on a massively parallel com-

puter. These computers, with thousands of processing

elements are entering the marketplace and offer better

cost performance than conventional mainframes, and

more importantly, promise to reach significantly higher

absolute performance levels in the coming years than
those which can be realized by conventional archite-

cures. This paper discusses how this technology can be

utilized efficiently for extremely computation-intensive

algoritms in seismic processing.

This paper focuses on the implementation of a reverse

time migration algorithm for 2D seismic processing.

The close match of this application with the Connection

Machine architecture results in substantial speedups

compared to conventional mainframes and strongly sug-
gests that this machine puts 3D seismic processing in
reach.

The remainder of this paper summarizes the archi-
tecture and programming issues of massively parallel

computers, followed by a discussion of the reverse time

migration algorithm and its implementation. A brief

performance summary for the program follows. The pa-

per concludes with comments on what massively paral-

lel computers can do today for seismic processing prob-
lems and the promise of this technology for the future.

Architecture and programming

of a massively parallel machine

A massively parallel computer can be viewed as a ma-

chine which can operate on thousands of data objects

at once, whereas a conventional computer operates on

one data object at a time. If an application permits for

instance to operate on all elements of a large vector or

matrix or on all nodes or edges of a graph in parallel,
then substantial execution speed improvements can be

obtained if a large number of processors is available,

ideally one processor for each data object.

A program for such a computer looks very much like

a program for a conventional computer, except that

certain program variables are declared to be parallel

variables which means that operations on those vari-

ables can take place in parallel. Instead of using a loop

statement to process all the elements of a vector or a

matrix or _ graph, one uses a select statement for all
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the elements and all statements in the body of the se-

lect statement are performed in parallel on the selected

set, like the statements in the body of a loop statement

are performed on each element visited.

The above sketches an idealized programming model.

Physical parallel machines usually have some limita-

tions for implementing this model efficiently. For in-

stance, processors have to be assigned to data objects
at compilation time and cannot be reassigned during

execution time. Also the computation which a proces-

sor performs an a data object that is assigned to it in

general involves access to data ojbects assigned to other

processors. The execution time of _local access" vs.
_nonlocal" access is of course different. Programmers

need to take this into account for writing efficient pro-

grams, but this is not much different from optimization

considerations on conventional computers.

A physical computer which implements this model

is the Connection Machine [Hillis, 1985]. Most of the

experience reported in this paper was gained on this
machine. The Connection Machine uses a conventional

host which provides all the infrastructure for program

development and communicating with other comput-

ers. This host has, however, several important enhance-

ments. It has a significantly enlarged memory which is
partitioned in equal chunks and each chunk has a pro-

cessor associated with it. These processors cannot just

access data in their part of the memory, but can also
access the entire memory of the machine. All proces-

sors can perform these accesses in parallel. The pro-
cessors of the Connection Machine can be viewed as an

extension of the execution unit of the host. Figure 1
illustrates the architecture of the Connection Machine.

The Connection Machine model which was used for

most of the work described in this paper has a max-

imum of 32 MBytes of memory and 64 K processors.

The number of processors which a programmer sees is

typically significantly larger than the number of physi-

cal processors. The system supports a virtual processor

concept. The host for the Connection Machine can be
either a VAX or a Lisp Machine. Parallel program-

ming concepts as described above are implemented as

straigtforward extensions of C and Lisp.

Reverse time migration

Finite-difference scheme

The reverse time migration process is well known and
well documented in the literature [McMechan,1983].

Conceptually, reverse time migration, as with all depth

migrations, involves the transfer of data from the



(y,z = 0, t) time plane to the (y, z, t = O) depth plane.

This concept is illustrated graphically in Figure 2. For
the acoustic case, which is discussed here, wave prop-

agation through the earth is governed by the acoustic

wave equation. Attention is further restricted to the

two dimensional case. Hence, the wave equation has
the form

1

+ u..= z------Tu. (I)

where U is the acoustic wave field. Reverse time migra-

tion is based on an exploding reflector concept wherein

the interface between rock strata explode with sound

at time to. From that moment on waves propagate

according to the above wave equation at velocities one-

half their true velocity in accordance with the explod-
ing reflector model. If acoustic measurements are made

at various places along the earth's surface for all sub-

sequent time we have the equivalent of a zero offset

stacked section. Migration is implemented by reversing

the process and exciting mesh points at z -- 0 with the
time reversed recorded signals. Since the wave equation

is ambivalent to the direction of time this is no prob-

lem. The recorded signals act as boundary values in

the numerical solution of the wave equation.

Discretization of the acoustic wave equation in

time and space follows traditional numerical methods

[Dablain,1986]. Using these methods equation (1) may
be approximated by a fourth order spatial and second

order temporal operator. The notation

U.k .,,,= u(m, _., _k}

is used in writing the difference operator (where tk

refers to reverse time} as

U.k .
t_3

where

2U k-1 _ U._-2
i,] ,,_

A 2
._ .__[ 16(U:;113. __ uk-1 uk-1 k-1i-l,j + i,s'+l -l- U:,i_l)

-- 60U_ 1 _ uk- 1i-t-2,3'

__ U k-I __ U k-1 __ U k-1'-2,j 4,j+2 ',i-2 ] (2)

A = v(y,z) _y.

For purposes of simplifying the explanation of the im-

plementation it will be useful to have the simpler second

order spatial operator as well. The difference equation

is [McMechan,1983]

U -k. 2(1 _ k-1= - 2A )U_,j - U.k-2$_3 tt,]

Uk-X U_-:+ A2 [ i+l,j-t- i-l,y

U_-I Uk-X+ + ]. (3)

Consider equation (3). There are three time steps in-

volved and three spatial points in each direction. This

equation is illustrated graphically in Figure 3 where the

three time steps are represented as three depth planes

in reverse time, tl- Each illustrated plane is a small part
of a larger mesh on which the finite-difference scheme

is carried out. The data values required to compute the
current grid point value, U ki,y, are identified as the grid
point's own previous and second previous value, and

its immediate neighbors' previous value. Again, refer

to Figure 3 for a graphical representation of the pro-

cess. Initially, the previous and second previous depth
planes are zero. This corresponds to the assumption

that all signals are recorded until they are identically

zero. Conceptually the reverse time migration proceeds
as follows; 1) load the boundary value corresponding to

time step t0, 2) compute all the grid points in the cur-

rent depth plane, 3) push the stack of depth planes so

that the current plane becomes the previous plane and

the previous plane becomes the second previous plane,

4) repeat until time _rnaz (or to} is reached. The final
solution will be an acoustic wave field reconstruction of

the exploding reflectors imaged at time to for all depths.

Because of reflections from the boundary of the com-

putational grid it is desirable to implement absorb-

ing boundary conditions along the two edges and the

bottom [Clayton,1977]. When the wave field in the

depth plane is computed in step (2) above, an absorb-
ing boundary difference scheme must be used on the

edges.

Parallel Implementation

Finally, we are ready to discuss the paralle algorithm
for reverse time migration. We assign a processor to

each grid point in the finite-difference mesh Figure 3.

To compute the current value in a processor requires

that the processor reference its own local memory for

the previous and second previous value. It also requires

that the processor get the previous value from each of

its neighbors. This is exactly what is done in mapping
the algorithm onto the Connection Machine. The time

axis in Figure 3 corresponds to the memory axis of each

processor. The time section is usually larger, in terms

of the number of samples per trace, than the depth

section. As a result, the time section is incrementally
fed into the Connection Machine.

In generating a new data value in each processor (at
each grid point} two of the memory accesses are lo-
cal and the rest are non-local. The non-local accesses

require utilization of the general communication sys-
tem. Four such accesses are needed for the second or-

der finite-difference operator. In addition, to load the

boundary value at the beginning of each time step re-
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quires another non-local memory access. To implement

the absorbing boundary conditions the processors on

the edge of the computational grid are selected and

use an absorbing boundary finite-difference operator to

compute a new value. Consider a typical unmigrated
seismic section. There might be 1024 traces and 2500

time samples. If 512 depth steps are desired, there
must be 512K processors using the purposed parallel

approach. Since there are only 64K processors, virtual

processors must be used for almost all practical cases.

Using a virtual processor ratio of 8:1 will provide the

required 512K processors.

Timing

The total execution time for a data set of the size 1425

x 625 x 2500 is 441 seconds. This computation takes

several hours on a large mainframe.

The whole issue of timing is obviously machine spe-

cific and is instantly out of date due to hardware im-

provements. The point is that parallel computers can

compete with the fastest serial supercomputers. In ad-

dition, the very fact that the Connection Machine has
floating point instruction times measured in hundreds

of microseconds instead of tens of nanoseconds points

provides significant technological improvement.

Conclusions

Results from the reversetime migration implementa-

tion and from the many other non-seismlcapplictions

that have been programmed indicate that massively

parallelarchitecturesare viableand can perform at su-

percomputer levels.

In the specificcase of a reverse time migration al-

gorithm, performance improved by two ordersof mag-

nitude relativeto a VAX 785. This improvement is

achieveddespiterelativelysimple individualprocessors

in the fine-graincomputer. The fact that there are

64K such processorsfar outweighs the fact that each

processor isslow. Overall, vast speed improvements

are possibleboth forreverse time migraion in partic-

ularand for seismicprocessingin general. One excit-

ing possibilityisthatthe dream ofinteractiveinterpre-

tation/processingmight be realized. Imagine a work

stationwhere an interpretercan repeatedly migrate a

section,trying differentvelocitymodels each time. In

so doing,the iterativeprocess ofconvergingon a satis-

factorydepth model might take a few hours insteadof

many days. In addition,because the interpreterwould

be intimatelyinvolvedin the processing,the finalresult
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would be betterthan with batch processing.This isjust

one computational problem that parallelcomputers can
address.
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ABSTRACT INTRODUCTION

In this paper, the implementation of Pan and Reif's
Parallel Nested Dissection algorithm on
mesh-connected parallel computers is described.
This is the first known algorithm that allows very
large, sparse linear systems of equations to be
solved efficiently in polylog time using a small
number of processors. We describe how the
processor bound of PND can be matched to the
number of processors available on a given parallel
computer by slowing down the algorithm by
constant factors. Also, for the important class of
problems where G(A) is a grid graph, we detail a
unique memory mapping that reduces the
inter-processor communication requirements of
PND to those that can be executed on
mesh-connected parallel machines. The paper
concludes with a description of an implementation
on the Goodyear Aerospace Massively Parallel
Processor (MPP), located at NASA Goddard Space
Flight Center, for which we give a detailed
discussion of data mappings and performance
issues.

The solution of large, sparse linear systems, Ax=b,
pervades many areas of physics and engineering.
Although parallel algorithms for tackling these
problems have existed for a number of years, they
have usually been impractical to implement because
of unrealistically high time bounds or processor
bounds, or both. In other cases, numerical stability
has been a problem; that is, unless the calculations
were performed in infinite precision they would yield
no solution at all. However, none of the above

problems apply to Pan and Reif's (Ref. 8) parallel
nested dissection (PND) algorithm. This algorithm is
based on computing a special recursive
factorization of A, thus reducing the problem of
inverting a large sparse matrix to that of inverting a
number of much smaller dense matrices. PND has a

considerably smaller processor bound than other
polylog parallel methods for solving sparse linear
systems. Furthermore, for any given parallel
computer with p processors, the algorithm can be
slowed down to give the best known time bound
for this processor bound p.

Keywords: Parallel Computation, Parallel Nested
Dissection, Recursive Factorization,
Mesh-connected Network, Separator, Grid Graph.
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Research, Lanham, Maryland.
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If A is an nxn matrix, we define a graph G(A)=(V,E) to
be the undirected graph with vertex set V={1 ..... n}
and edge set E={{i,j}IA i not equal to 0}. Here we
shall confine our attent dn to the application of PND
to sparse, linear systems where G(A) is a
two-dimensional (2-D) grid graph. Such systems
occur very extensively in the solution of partial _
differential equations. However, it should be
emphasised that the algorithm is not restricted to
this class of problems.
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TheMassivelyParallel Processor (MPP) is an SIMD
controlled, fine-grained, 2-D mesh-connected
parallel computer with 16,384 Processing Elements
(PEs) built by Goodyear Aerospace for NASA. This
paper will describe how PND can be implemented
on this computer and other parallel machines with a
similar architecture. The implementation is
particularly challenging because of the SIMD control
structure of these computers. Central to the
implementation is a unique memory mapping that
reduces the communication requirements of PND
to those that can be executed using only mesh
connections. Also, the algorithm has been
implemented on the Connection Machine, built by
Thinking Machines Corporation, whose processors
are connected in a hypercube. This implementation
is described in Ref. 5.

In the next section, we give a more detailed
description of PND, while the final section contains
the implementation method for mesh-connected
parallel computers together with some performance
estimates.

DESCRIPTION OF PND FOR GRID
GRAPHS

The method of parallel nested dissection (PND) and
its proof has been described in detail elsewhere

(Ref. 8). Here, we will give a relatively
self-contained overview of the method. Since it is
far from obvious how PND can be used on the MPP,
the description concentrates on those aspects of
the method that are critical to understanding our
implementation for mesh-connected parallel
computers.

Fundamental to the nested dissection of
undirected graphs is the idea of separators. A
separator is a set of vertices that partitions a graph
into two sub-graphs that are connected only
through the separator. Each of the sub-graphs
must contain no more than 2/3 and no less than 1/3
of the nodes of G(A). For a graph of n vertices, the
size of any separator is bound by a function s(n). In
the case of planar graphs s(n) is O(nl/Z). An
undirected graph is said to have an s(n)-separator
family if the class of all its sub-graphs has an
s(n)-separator family. Binary trees, for instance,
have a 1-separator family while a d-dimensional Qrid
of uniform size in each dimension has n1-(1"/d)

-separators.
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The removal of separators from a graph, G(A), and
its resultant sub-graphs, is in fact analogous to
eliminating the unknowns of the associated linear
system, in the order given by the numbering of the
vertices in the separators. Sequential methods for
solving sparse, linear systems have long made use
of nested dissection (Ref. 3) to reduce the problem
to that of inverting dense matrices of size at most
s(n)xs(n). PND is the first algorithm for efficiently
solving sparse, positive definite linear systems,
Ax=b, on parallel c_)mputers that only requires
polylog time and s(n) '_ processors. Moreover, the
algorithm is numerically stable. PND constructs in
0(Iogn) stages a special recursive factorization of A.

This T factorization is distinct from the
LDL'-factorization used in sequential dissection.
Another important difference between sequential
dissection and PND is that the latter requires the
elimination of many, rather than one, separators at
each step of the algorithm.

Suppose G(A) has a separator that decomposes the
graph into two sub-graphs. Furthermore, suppose
that these sub-graphs can be partitioned recursively
through the use of separators. In this way we can
construct a separator tree (see figure 1) whose root
is the separator of G(A). This root has two children
that are the separators of the two sub-graphs. Each
of these children is in turn the parent of two new
children and so on. The leaves of the separator tree
are singleton node sets of remaining sub-graphs.

One of the general difficulties of PND is to compute
efficiently in parallel s(n)-separators. Fortunately, for
the practically important case of grid graphs, which
we are concerned with here, there is a simple way to
do this in O(Iogn) steps. At the completion of these
steps the vertices of the graph have been
renumbered from 1 to n using the separator tree as
a guide. PND requires that A is permuted to reflect
this renumbering. Assuming this has been done,
Pan and Reif (Ref. 8) define a recursive
s(n)-factorization by a sequence of matrices A0,

A 1,..., Ad where,
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Fi0ure 1 - Separator tree for a 3x3 grid graoh

A0-- PAPT ; P is a permutation matrix

Ah=
h YhTi (1)
h Zh

Zh-- Ah+ 1 + YhXh'IYhT; h=0,1 .....d-1

There are several important points to note about

equation (1). Let d be O(Iogn). Also, let Nh be the
number of separators at level h and nh k (k= 1...N h,
nh k<=(2/3)h) the maximum size of an'y separator at
th_ hth level. It can then be seen that Xh is a

block-diagonal matrix consisting of Nh s_uare
blocks of sizes at most nh kXnh k- Thus, Xh'" can
be computed by inverting th_se small diagonal
blocks separatelyL It also follows that the matrix
product YhXh -1Yh T can be decomposed into O(Nh)
triplets of sizes O(n h kXnh k)- Pan and Reif (Ref. 8)
prove that both of the a_ove operations can be
performed in O(Iog2s(n)) time using at most s(n) 3
processors. In fact, the main advantage of the
recursive s(n)-factorization is that it only requires
O(Iogn) stages. This implies that the entire
s(n)-factoriz_tion of A can be computed
inO(Iogn(Iog_s(n)) time using s(n) 3 processors.
However, on even the most parallel of currently
available computers such as the MPP and the
Connection Machine, this bound will severely
restrict the size of problems that can be solved.
Fortunately, the PND algorithm can easily be slowed
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downso that the numberof processorsrequired
matchesthat of a spe._ificparallelmachine. In
particular, if s(n)=n1/>' then nprocessors is
sufficientDrovided the algorithm's speed is reduced
by an nl/2factor. As a matter of fact, a careful time
analysis shows that the total time to complete the
s(n)-recursive factorization of A in this case is
o(nl/2). As we shall see in the next section this

allows very large sparse matrices to be inverted on
the MPP.

Finally, the recursive s(n)-factorization allows us to
write

Ah=

/ Xh'lYhT-

0 I

-- (2)

and hence

Ai 0IIY i
I _ Ah+ 1 hXh"1

--- (3)

Thus, given an s(n)-factorization of A, it is easy to
recursively compute A"b for any column vector b of
length n. This "backsolving" computation can be
performed in time O(Iognlogs(n)) using
s(n)2processors. It should be noted that here we
do not have to s._w down the parallel computation
when s(n)=n 1/z and the number of available
processors is n.
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In summary, a step in the recursive s(n)-factorization
of A is accomplished by moving one level up in the
separator tree removing the level h separators from
the sub-graphs by eliminating the corresponding
unknowns of Ah 1" This involves O(Nh_ matrix
operations on _n+atrices of size O(n h k =) (see
above). If these operations are performed b)_
systolic algorithms, they require a maximum of s(n)"
processors and take O(s(n)) time. Once the root of
the tree is reached (Nh_=l, h=d-1), the
s(n)-factorization is complete. Two traversals of the
separator tree are then necessary to perform the
"backsolving" because of the recursive nature of
equation (3)'and the total time for these
computations is O(Iognlogs(n)).

IMPLEMENTATION OF PND ON THE MPP

In this section we will discuss an implementation of
PND, for the case where G(A) is a nl/2xn 1/2 grid
graph, for mesh-connected parallel computers, in
general, and for the MPP in,particular.

Representing a Grid Graph as a Set of
Boxes

To be able to fully explain our implementation of
PND on the MPP, we first need to expand on some
of the ideas of the previous section. Consider a
phase h of the recursive factorization where Xh is a
block-diagonal matrix consisting of a total of Nh
blocks x h k (k=l..Nh) of size at most nh kXnh k"
Each of t_ese diagonal blocks can be a_socia.'ted
with a given separator. Thesame applies to the
triplets y_k(Xh k )'l(yh k )T (size O(n h k 2) of
YhXh-]Yh I'. Fuffhermor_, their existence'implies
that Z h can 12ebroken up into N h blocks z h k also of
size O(n h k=). This in turn means that Ai_ can be
considere_ as being made up of Nh smaller matrices
ah k" TEach of these will consist of a xh k, Yh k,
(Yh k)-- and a zh k" The crucial observation,
however, is that the' mh,k'S (m= a, x, y, z) are much
smaller and denser than the big matrices to which
they belong. Thus, a key element of the MPP
implementation of PND is to compute Ah+ 1 as
Nh+ 1 ah+l'S. We will now describe in detail our
implementation of the hth stage of PND where

Ah+ 1 must be computed from Ah.

In figure 2, the grid graph of figure 1 has been
extended so that each vertex is the junction of four
edges, each of unit length. The resultant graph
may be represented as a tiling of 2-D boxes with the
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vertices lying algng_their perimeters ( seLefigure 3 ).
Each box is a 2nx2 n+_ rectangle or a 2nx2 n square
depending on whether h is odd or even,
respectively. Now, in computing the aI k'S (h= 0),
the level zero separators are removed ('vertices 1,
2, 3 and 4 for the grid graph of figure 3 .). This may
be viewed as merging pairs of boxes into single
boxes. All vertices strictly internal to a box will be
eliminated by the s(n)-factorization of A. The box
representation of a unit edge length grid graph can
be used at all levels in the separator tree and its
traversal therefore translates into repeated
box-compositions. A box bh k has
2( nh, k + nh. 1,k + 2) vertices on its perimeter. A
matched pair of level h boxes is defined as two
boxes that have a common separator sh k- The first
vertex on either side of a separator will'be referred

to as contact points denoted by c o and c 1,
respectively.

The arithmetic associated with the box-composition

breaks down as follows: To compute the ah+ lk_
will require Nh dense matrix inversions (or L0'L"

decompositions), 2N h matrix multiplications and Nh
matrix subtractions. These operations will be

performe_ by systolic algorithms using sub-arrays of
O((nh k)") processors ( see below for alternative
non-systolic algorithms for the MPP). Because the

two a h k'S of a pair of boxes are not completely
disjoint 'due to the boxes' common edges it will also
be necessary to merge pairs of ah k'S by adding
together the common edge coefficieSt_ in order to

compute the Zh, k, Yh,k, Xh_.kand Yh,k" needed in

the calculation of ah+ 1 k" This requires another Nh
matrix additions. It should be noted that the final
stage ( h=d-1 ) of the s(n)-factorization of A involves
the inversion of a single matrix of size s(n)xs(n) and
that the time required for this is O(s(n)). Hence, the
cost of the final stage is the dominant element in
the total time for the factorization.

The arithmetic described above will require
inter-processor communications. The patterns of
these, as well as their cost, depend on how A and
its factors are mapped onto the local memories of
the PEs. In the following a unique memory mapping
scheme is described that creates local
communication patterns that are supported by
mesh-connected machines such as the MPP. This
scheme also ensures that data can be sent to the
correct processors using SIMD control so that no
explicit address calculations are required.

Mapping a Box Representation of a Grid
Graph onto the MPP.

Let each box of a box representation of a grid graph
correspond to a (nh k+ nh. 1 k + 2) neighborhood
of processors such that the _oefficients of adjacent
boxes in the graph will be stored in adjacent
neighborhoods of PEs. Within each of these
neighborhoods, data is laid out using the following
nile: The ordering of the coefficients should be that
given by taking the vertices of the perimeter of the
box in a clock-wise direction, starting in the lower left
hand corner, just above the corner vertex. Figure 4
shows the result of using our memory mapping
scheme for the pair of boxes of figure 3 with
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PE : i->

J
North Box

I

(-) o o o o x o

(-) o o o o x o

(-) o o o o o o

(7) 0 0 0 X X 0

(1) 0 0 0 0 0 0

(_) o o o o o

South Box

(-) (1) 7) (8) (5) (-)

(-) o o x o x o

0

X -non-zero
coefficient

(1) 0 X X 0 X 0

(7) 0 X X X 0 0

(8) 0 0 X X X 0

(5) 0 X 0 X X 0

(-) o o o o o o

(m) - vertex number
( - ) - missing vertex

Figure 4 - Example of memory mapping for a pair of
boxes with common edge (1,7) of 3x3
grid graph of Figure 1.
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common edge (1, 7). On a mesh-connected
co m,.puter with p pr^ocessors,
(pl/Zl(n h k+nh+l k+ 2))z boxes can be operated
on in para'llel. The _ctual location of each box within
the processor array must be precomputed for all
levels of the separator tree before the recursive
decomposition of A can start. Our box-compositon
strategy greatly simplifies this problem since it
allows the processor in which each coefficient is to
be stored to be determined based simply on the
connectivity of the graph.

Two additional ideas are essential to the successful
use of the memory mapping scheme described
above. First, it is helpful to think of the boxes as
having an orientation: For even h, the separators
are horizontal and the boxes lie along a north-south
axis while for odd h the separators are vertical so
that the boxes have an east-west orientation.

Second, the merging of a pair of ah k'S ( see above )
is facilitated by dividing the _ertices on the
perimeters of the boxes into sequences that will
contain different vertices depending on the
position of a box in a pair.

Let s h k be a separator at the hth level in the
separa|or tree. Then, for a North (East) box let
sequence a (sqa) be the (2nh. 1 k+nh k+l) first
vertices and sequence b (sqb) 'the c_, si.j. k(in
reversed order) and cO vertices. Also, for a _uth
(west) box let sequence a (sqa) be the nh_1 k first
vertices, sequence b (sqb) the c 0, sh k a_d c 1
vertices and sequence c (sqc) the _emaining
vertices. The steps involved in merging pairs of

ah,k'S can now be described as:

(i) For each north ( east ) box reverse the
coefficients associated with the contact points
about the data for the separators and move c^ data

U

to the processors containing this data for the south
( west ) box

(ii) For each north ( east ) box, reverse the order of
the separator coefficients

(iii) Insert the data for sqa and sqb ( minus the cO
coefficients ) for the north ( east ) box after the data
for the sqa of the south ( west ) box: this

automatically aligns the c I and Sh,k coefficients for
the two boxes

(iv) do matrix addition

The data movements of (i), (ii) and (iii) translate into
shifts through the mesh-connected network. The
important points are that all shift distances are given
by the dimensions of the boxes and that the data for

common edges automatically line up. Having
merged the pairs of ah's, the computation of ah+ 1 k
becomes straightforward since all the required dat',_
is now stored in a local neighborhood of
processors.

"Backsolving" and Performance Issues

PND reduces the problem of inverting (LDL T
decomposition) a large sparse matrix, A, to that of
inverting a number of much smaller dense matrices
by computing a recursive s(n)-factorization of A.
Now, a choice has to be made as to which

algoriTthms should be used for matrix inversion(or
LDL-decomposition) and multiplication on the
MPP. We have implemented both systolic and
non-systolic algorithms for these operations. In the
case of inversion, a comparison was made between
a non-systolic Gauss-Jordan and a systolic Givens
rotation method (Ref. 1) This comparison showed
that although the latter required much less
inter-processor communications than the former,
this was off-set by the MPP's broadcasting facility
and the smaller number of arithmetic operations of
Gauss-Jordan. A similar result was obtained for the
matrix multiplication algorithms.

Finally, let us consider the "backsolving" part of
PND. An inspection of equation (3) shows that in
order to minimize the total amount of arithmetic
required to solve a sparse, linear system using PND,
some of the quantities computed during the
factorization of A should be saved for the
"backsolvjng" calculation. These include
Xh k -lyh kTand Xh k"1" Since each processor of
th_ MPP'has only ll_-bits of local memory, it would
be impossible to store quantities where they are
computed. However, the processors also have
access to 16k-bits of staging memory each. This
gives the MPP an impressive total amount of
storage and makes possible the saving of quantities
described above. The overhead of moving data
between local processor memories and the staging
memory would be less than that incurred if
quantities had to be recomputed during the
"backsolving" stage.

The remaining issue is now how to perform the
sparse multiplication A'lb given our memory
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mapping. Thereare two possibleapproaches-
either to divideb intosegmentsbasedon the
verticesoftheperimetersof aboxor tostorebasa
singleglobaldatastructure. We havechosento
implementthe former strategy. Note that in
principle,thesum-ortreeof theMPPcanbe used
to pipelinethe solutionsto manysparse linear
systems,Ax=b,assumingA is thesamefor all of
them. In particular,wecansolveO(s(n))systems
with distinctvectorsb in total timeO(s(n))using
s(n)2processors.

Withthe implementationof PNDoutlinedin this
section, and given the storage constraints of the
MPP, estimates show that linear systems with up to
16k unknowns can be recursively factorized in
about 40 seconds. The "backsolving" will take
about 1 second. It should be noted that the size of
the problems that can be tackled by our
implementation of PND for mesh-connected parallel
computers is only limited by available machine
memory.
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ABSTRACT

The Massively Parallel Processor,
has been designed as a special machine

for specific applications in image

processing. As a parallel machine, with
a large number of processor that can be

reconfigured in different combinations

it is also applicable to other problems

that require a large number of

processors. This work investigates the

solution of linear systems of equations
on the MPP. The solution times achieved

are compared to those obtained with a

serial machine and the performance of
the MPP is discussed.

INTRODUCTION

The advantage of a parallel

computer is in its potential ability to

solve large problems in realistic

solution times. In particular, as the

improvements in speed of single

processor computers approach intrinsic

limits, the appeal of parallel

processing becomes more significant.

Yet, beyond the fact that some problems

have little or no natural parallelism,
the performance of such machines is not

known with any accuracy. The ideal
performance is of course well defined.

It depends on the number of processors

and their speed. Thus, upper and lower

limits on computation speed can always
be obtained. This does not take into

account a variety of considerations

like I/O and other degradation factors.

Thus, in the ideal case, the speedup

achieved through parallel processing

is equal to the number of processors

[I]. A variety of factors influence the

performance to reduce the speedup

considerably. Among these factors, the

competition of processors for hardware
and the interaction between the

parallel processes are the most

important [2]. Obviously, the algorithm
to be executed has a drastic influence

on the performance. Ideally, the

algorithm has intrinsic parallelism
such that there is no need to idle

processors. In reality, this is not the

ease and there are always serial

operations to be performed. Again, in

the limit, when no parallel operation

can be performed, the parallel

processor is used as a serial computer.

Estimating the performance of a

parallel processor for any particular

type of problems is not a trivial

process. In many cases this cannot be

done without actually solving the

problem and then evaluating the

performance. Thus, the need to evaluate

a computer's performance on well

documented problems or benchmarks

becomes extremely important,

particularly with parallel processors.

With all this, one can safely assume

that some degree of parallelism does

exist in most algorithms and therefore
an improvement in solution time

compared with serial machines can be
realized.
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The work presented here attempts

to establish the usefulness of a

parallel processor, the Massively

Parallel Processor (MPP), for the

solution of systems of linear

equations. No attempt is made to either

optimize code or to establish exact

performance figures. Such an attempt is

beyond the scope of this paper and

would require considerably more work.

Instead, the emphasis is on a

particular simple algorithm and on the

comparison of performance with a serial

computer (the Microvax II). The type of

systems solved are those arising from

the application of the finite element

method to engineering applications. The

finite element method is particularly

computationally intensive. By using a

parallel processor, it is conceivable

that considerably faster solution times

can be achieved or, alternatively,

larger problems can be solved.

The solution method chosen for

evaluation is the Gauss elimination

method. It is used as representative to

direct solution methods and because for

the majority of practical applications

it is used almost exclusively. The

results will therefore be useful for

implementation of other similar methods

like the Gauss-Jordan or the Choleski

decomposition methods.

The system in Eq. (1) is assumed

to be symmetric, positive definite for

the purpose of this work although none

of these requirements is necessary in

general. The elimination is done in the

following order:

Equation la is divided by its

diagonal coefficient to obtain

x1+a12/allX2+a13/a11X3 +...

.... +aln/allXnfC1/a11 (2)

Equation (2) is multiplied by the

first coefficient of (lb)

a21X1+a21a12/a11X2 + ......

• ..+a21a2n/a11Xn=C1a21/a11 (3)

Eq. (3) is subtracted from Eq.

(Ib) to eliminate the coefficient of X_

from Eq. (Ib). In the next step, Eq!

(2) is multiplied by the first

coefficient in Eq. (Ic). Subtraction as

previously results in elimination of

the coefficient of X_ in Eq. (Ic).

Repeating this for al_ the remaining

coefficients in the first column

results in the following system:

GAUSS ELIMINATION

Consider the following system of n

equations with n unknowns:

a11X1+a12X2+a13X3 + ...... +alnXn=C1 (la)

a21X1+a22X2+a23X3+ ...... +a2nXn=C2 (Ib)

a31X1+a32X2+a33X3+ ...... +a3nXn=C 3 (Ic)

aniX1+an2X2+an3X3 + ...... +annXn=Cn (In)

a11X1 + a12X2+ a13X3+ ..... + alnX n

=C I (4a)

a'22X2+a' 23X3 + .... .+a'2nX n

=C' 2 (4b)

a'32X2+a'33X3+ ..... +a'3nX n

=C' 3 (4c)

a'n2X2+a' X + ..... +a'nnX nn3 3

=C' (4n)
n

2_8



In this set, all coefficients were

altered except for those in the first

row. It is important to note that the

operations are done on a whole row at a

time, a property which will be

exploited later for parallel

calculation.

The elimination proceeds by

repeating the whole process starting

with the second equation. After n-1

such elimination steps, the original

system is reduced to an upper

triangular system:

a11X1+ a12X2+ a13X3+ ..... + alnX n

= C 1 (5a)

a'22X2+ a'23X3+ ..... + a'2nX n

=C'2 (5b)

a"33X3+ ..... +a" X3n n

=C' 3 (50)

n
a X

nn n

=Cn (5n)
n

The elimination step, which is

done in place (i.e. in the same

locations the original matrix resides),

is followed by a baeksubstitution step.

This starts by calculating X
n

n n
Xn = C nla nn (6a)

The rest of the unknowns are

calculated as:

n

Xi : [C i - _ a_,X,]la.. (6b)
j=i_ xJ J zz

where i = n-l, n-2, ........ , I and C i
are the modified right hand sides in
Eq. (5).

THE MASSIVELY PARALLEL PROCESSOR

For the solution of linear

systems, the two most important aspects

related to the MPP are the number of

memory planes in the ARU and the size

of the staging memory available for

use. Although the ARU contains 1024 bit

planes of memory, the programmer can

use only bit planes from 0 to 973. Bit

planes from 974 to 1023 are reserved

for use by system software (Control and

Debug). This limits the number of

128"128 real arrays (32 bit floating

point arrays) in the ARU to 30. Without

taking into consideration any necessary

scratch arrays, the capacity of the

ARU is limited to one 640*640 real

array or an equivalent size array. In

practical terms, since scratch arrays

are needed, the limit is lower. A

matrix of 512"512 is the limit if

increments in size of 128"128 are to be

used.

The staging memory has a capacity

of 32 Megabytes. This limits the number

of stored 128"128 real arrays in the

stager to 512.

It is important to note that the

parallel Pascal callable I/0 procedures

can transfer only one 128"128 array in

or out of the ARU at any one time. This

makes it necessary for any array larger

than 128"128 to be blocked into sub-

arrays of 128"128 by assigning the

larger array two more dimensions.

Blocking of a 512"512 array is given in

Fig. 1.

Other aspects of programming on

the MPP are not discussed here although

they are necessary for implementation.

These can be found in a variety of

references [3,4,9-15].
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IMPLEMENTATION ON THE MPP

Since the minimum data array that

can reside in the ARU is 128"128, as a

first step the Gaussian elimination was

implemented for an array of this size.

In addition to the data array, three

more real arrays (32 bit) and one

boolean array were used as scratch

space for the Gaussian elimination.

That is, 97 bit planes were used as

scratch space.

The algorithm used for Gaussian

elimination of an 128"128 array can be

written in pseudo code as

DO UNTIL # ROWS = 128

BEGIN

NEW ARRAY <-- PIVOT ROW FROM ORIGINAL

ARRAY;

PIVOT ELEMENT ARRAY <-- NEW ARRAY;

MULTIPLIER ARRAY <-- ORIGINAL ARRAY;

NEW ARRAY <-- NEW ARRAY/PIVOT ELEMENT

ARRAY;

NEW ARRAY <-- NEW ARRAY*MULTIPLIER

ARRAY;

ORIGINAL ARRAY <-- ORIGINAL ARRAY - NEW

ARRAY;

END;

The parallel Pascal code for

Gaussian elimination of an 128"128

array was used as the building block

and was extended for larger arrays. An

array of 512'512 was chosen since this

is the maximum array that can reside in

the ARU. Scanning of the 512"512 array,

by a block of 128"128, is given in Fig.

2.

A theoretical calculation of

timing for an array of 1024"1024 was

also done. The 1024"1024 array was

blocked into four sub-arrays of 512"512

and at any given time one 512"512 sub-

array resided in the ARU. The actual

time needed for loading/unloading the

ARU with a 512"512 real array is 590

ms. The time needed to eliminate 2

columns from a 512"512 real array is

10 ms. A real array of 512"512 occupies

512 bit planes. This leaves the ARU

with 14 real arrays to be used as

scratch space. Of these, one plane is

necessary to use as a boolean array for

the mask plane. This makes it possible

to save 14 "coefficient" arrays in the

ARU. By saving 14 coefficient arrays it

is possible to eliminate 2 columns from

any of the four 512"512 sub-arrays, the

Gaussian elimination on the 1024"1024

real array can be written in pseudo

code as

DO L = I To 2

BEGIN

DO K = I TO 256

BEGIN

DO I - L TO 2

DOJ=LT02

BEGIN

IF L - I THEN

BEGIN

ELIMINATE 2 COLUMNS FROM

SUB-ARRAY;

UNLOAD SUB-ARRAY TO STAGER

WHILE LOADING NEW SUB-ARRAY

TO ARU ;

END;
ELIMINATE 512 COLUMNS FROM

LAST SUB-ARRAY ;

END;

END;

END;

RESULTS

The solution times for Gaussian

elimination of an 128"128, 512"512 and

1024"1024 real arrays on the MPP are

summarized and compared with the

solution times for the same arrays on a

Microvax-II. The performance of the MPP

compared to a serial computer is

illustrated in Fig. 3-

Arrays below the size of 27*27 can

be solved on the Microvax-II computer

and obtain the same performance as on
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the MPP. The array size below which it

is more economical to use a serial

computer, depends on the type of the
serial computer.

But, as seen in Table I and Fig.

3, the performance of the parallel
computer (MPP) improves with the

increase of the size of the data array

and drops sharply once the data array

exceeds the memory space of the ARU.

Taking into account the actual times

involved, the MPP is much faster than a
serial machine.

It is important to note that the

algorithms used for the MPP were not

optimized, since the study involved

only understanding the performance of

the MPP in solving large systems of

linear equations and not the precise

evaluation of the MPP performance. Fig.

3 clearly shows the tendency of the
behavior of the MPP. In addition to the

algorithms being nonoptimized, no

attempt was made to taylor the

algorithm to a particular type of

problem. For example, consider the

matrices generated by finite element

modeling which are banded (and, in many
cases, symmetric).

For this type of matrices great
advantage can be taken of the fact that

the matrix has a limited bandwidth. The

shaded areas in Fig. 4 show the sub-

arrays (128"128) that could be used

while solving (scanning) a 512"512
banded matrix with a bandwidth which is

less than 128.

The performance can also be

changed by using different blocking

techniques for larger arrays. It will

be interesting to see the performance

when a 1024"1024 array is blocked not

as four arrays of 512"512, but four

1024"256 arrays. In this way, the

optimal blocking of large arrays for
particular problems can be chosen.

The experience gained here clearly
shows not only that the solution of

large systems of equations is possible

and faster than that possible on serial
machines but also that there is an

alternative between using large arrays

or smaller arrays with large memory.
The structure of the MPP allows the

user to fit a matrix as large as the

memory of the stager. Clearly, if the

matrix can be fitted in the ARU, the
solution will be faster than for the

case where parts of the matrix need to

be retrieved from the stager or from
the front end computer.

From the results presented above

it can be seen that an 1024"1024 array
(for example) will solve a 1024"1024

matrix in about 48 ms which means a

speedup of about 69,320 against the

speedup of 6.6 for an 128"128 array.

At the same time, an 128"128 array

with large memory (large enough to
contain the matrix) can solve a

1024"1024 matrix in 4.21 s, resulting
in a speedup of 823 compared to 6.6

with a Ik memory.

As it stands now, the tendency

seems to be towards larger arrays but

it will be interesting to study the
performance of these machines with

larger memories which are by nature

less expensive than processors.

CONCLUSIONS

The results presented in this work

show that the Massively Parallel

Processor is particularly suited to the

solution of problems which can fit in

the ARU. The speedup obtained compared

to serial computers is in the hundreds.

Not surprisingly, the performance

deteriorates somewhat when parts of the

matrix need to be brought in from the

stager. The deterioration in

performance is quite dramatic when the

matrix does not fit into the stager and

there is a need to perform considerable
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I/O. With all this, the solution is

always faster than for serial

computers.
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Table I. Processing speeds of Microvax-

II and MPP

Array Microvax MPP Speedup

16"16 10 ms 48.07 ms 0.2

27*27 50 ms 48.07 ms 1.0

128"128 5500 ms 48.07 ms 114

512"512 340 see 1.272 sec 267

1024"1024 57.76 min 8.12 min 6.6
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The Factorization of Large Composite Numbers on the MPP

by

Kathy J. McKurdy, Goodyear Aerospace Corporation

Marvin C. Wunderlich, Department of Defense

1. Introduction: The continued fraction

method for factoring large integers (hereafter

referred to as CFRAC) was an ideal algorithm to

be implemented on a massively parallel

computer such as the MPP. The history of this

effort goes back many years. The first effort to

implement this algorithm on the ILLIAC IV was

thwarted first by an inadequate resolve on the

part of a funding agency and then by the sudden

dismantling of the computer itself. The second

attempt was to put the program on the English
DAP with the able assistence of Dennis

Parkinson of Queen Mary College, London. This

effort was spoiled by the inadequate amount of

time the second author was able to spend in

England in the summer of 1982. He was finally
able to devote full time on the NASA MPP

implementation in the summer of 1984 and by
September of 1985, the authors suceeded to

factor their first 60 digit number on the MPP

using about 6½ hours of array time. Although

this result added about 10 digits to the size

number we could factor using CFRAC on a serial

machine, it was already badly beaten by the
implementation of Jim Davis and Diane

Holdridge on the CRAY-1 using the quadratic

sieve, an algorithm which is clearly superior to

CFRAC for larger numbers. This work does

illustrate, however, an algorithm which is

ideally suited to the SIMD massively parallel
architecture and we describe some of the

modifications which were needed in order to

make the parallel implementation effective and
efficient.

2. The Continued Fraction Algorithm. To

describe this method, we must first describe a

method for generating small quadratic residues,

mod N, where N is the composite number we

wish to factor. An integer Q is said to be a

quadratic residue, mod N, if an integer A exists
such that

(1) Q _ A2(modN).

Pairs (Q,A) satisfying (1) can be generated

by expanding the simple continued fraction of

x/N. Space and time prevents us from

elaborating on this subject so it must suffice to

simply describe the algorithm. If we initiate the

variables d = [X/N], A_I = 1, Po = 0, Qo = 1,

Ao = d, we can generate the pair (Qk+t, Ak)
recursively from earlier pairs by the formulas

(2a) qk = [(Pk + d)/Qk ]

(2b) Pk+l = qkQk--Pk

(2c) Qk+ l = (N-p2 k+l )/Qk
and

(2d) Ak+l -- qkAk + Ak_t (modN)"

Then it can be proved that

(3) Ak2 1)k+- (_ IQk+l(modN)
and

(4) Qk -< 2X/N.

Now the clever reader may recognize a novel

factoring method here. If N is the composite

number to be factored, simply generate the pairs

(Qk+l, Ak) until Qk+l is itself a square and k is

even. Then if Qk+l = X2, we have (Ak) 2 _- X 2
(mod N) or

(5) N]A 2 _ X 2 = (Ak_X)(A_ +X)"

If N = pq where p and q are both primes, there

is an even chance that one prime will divide

Ak- X and the other will divide Ak + X and in

this event, computing the greatest common

divisor GCD(N,Ak-X) will reveal either p or q
and N is factored. If this doesn't happen for Qk,

keep generating (Qk + 1, Ak) pairs until a square
Qk+l works. From (4), there are about 2X/N

different possible values of Qk and among them
there will be about N.25 squares. Thus, we

should have to generate about N.25 values of Qk
before N is factored. The clever reader should

?RI_2.1_DING PAGE BLANK NOT FILMI_D
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congratulate himself for noticing this since

his/her algorithm is already vastly superior to

the simple divide and factor method which

requires min(p,q) operations. However, this
still consumes too much computer time to be

really competitive with the leading state-of-the-
art methods.

What we do in CFRAC is to obtain

collections of Q's whose product is a square.

Suppose I is a set of indices which defines such a
collection. We deduce from (3) that

X2-- [1 (-1)iQi-= _ A2i-I =y2(m°dN)(6)
iEl i_l

and since N = pqlX2-y2 = (X-Y)(X+Y),a

factor can be produced by computing

GCD(X- Y,N). To find a collection of Q's whose

product is a square, we attempt to factor each Q

over a fixed set of primes Pl, P2, --. ,Pk and

represent each Qi which factors completely

with a binary vector (co, el, c2, ... ,Ok) where cO
is ± 1 according to which of +Qi+l -- Ai 2 in (3)

and cj, i < 0, is one if pj divides Qi to an odd
power and zero otherwise. Note that the vector

ci is the zero vector if and only if the

corresponding value Qi is a square and a

quadratic residue, mod N. When we have
factored more than k of these values Q, we can
form a matrix M with these vectors and M will

have more rows than columns. We can perform

a Gaussian reduction on this matrix, produce
zero rows and each such zero row will represent

a collection of Q's whose product is a square.

Thus (6) is satisfied and we may be able to

factor N by computing the appropriate GCD. If

this doesn't work, we can use another such

collection of Q's since a collection whose product

is a square is generated with each zero row

produced from the Gaussian reduction.

3. The MPP Implementation: The most

time consuming aspect of this algorithm is the

factorization of the Q's. Each value of Q must be

divided by each of the k primes in the base of

primes until the number of factored Q's exceeds

k. To factor a typical 60 digit number, one must

attempt a factorization of over 100,000,000

values of Q using a base of 4,000 prime

numbers and this requires 4x1011 division

instructions. The MPP implementation

described in this section performs this task very

efficiently as well as the task of generating the

(Q,A) pairs and the final Gaussian reduction.
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We shall discuss these three parts of the

implementation separately.

3.1. Stepping. The generation of the

(Q,A) pairs is clearly a recursive process and

there is no obvious way to employ 16,384

processors to accomplish this task in parallel.
However, Daniel Shanks and Hugh Williams

have devised a very clever algorithm for taking

giant steps in the recursion process. Knowing

(Qs+l, As) and (Qt+l, At), one can generate a

term (Qu+l, Au) whose u is very near s ÷ t.

The time needed for this composition is a

constant which does not depend on s and t.

This enables us to generate a pair (Qt+l, At)

where t is as large as we please by composing a

succession of terms with a nearby term

approximately log2t times. For this particular

implementation, we first generated (Qt+l, At)

for t near one million (1M) and then generated

16,384 pairs (Qr+l,Ar) where r was 1M, 2M .... ,
16384M. This was done on a fast serial machine.

Then we put a pair (Qr+l, Ar) in each of the

16,384 processors and generated successive

terms in parallel using the recursion (2). Since

the terms are 1M apart, we can generate as

many as 16,384,000,000 terms before there is

any danger of the same pair being generated in

neighboring processors.

A serious problem arose in trying to

implement the recursion described in (2) in

parallel on the the MPP. The numbers involved

are quite large. For a 60 digit factorization, the
A's are 200 bits, the P's and Q's are each 100

bits and it was not possible to perform all the

necessary arithmetic in the 900 bits of available

memory in the ARU. For this reason, we used a
fast bit plane I/O system developed by Goodyear

Aerospace to use the staging memory as

auxiliary storage. Using that package, storage
can be allocated in the stager memory in the

same way that storage is allocated in the ARU.
A set of SEND macros exists which moves data

between the stager and the ARU. SEND macros
also exist to move data between the ARU and the

Host, and the MCU and host. This package has

essentially doubled the available memory for

doing computational processing and has also

provided an easy-to-use I/O management

package for the entire algorithm. Data moves
between the ARU and the stager can concur

with computational operations which

considerably reduces the extra time needed for

the data swapping.



3.2.The Factoring. Having a different value

of Q in each processor and the corresponding

value A in the staging memory, the program
now proceeds to attempt a factorization of the

Q's over a set of primes stored as scalars in the

MCU. Actually, the MCU only contains the

differences between the consecutive primes. It

also should be pointed out that the prime base
consists of the smallest 4000 primes which are

possible divisors of the Q's, and since the Q's are

quadratic residues, mod N, only primes p for

which N is a quadratic residue, mod p, are

possible divisors of Q and so the prime base

consists of the smallest 4000 primes having this
property.

The fundamental operation is to divide all

the values of Q by the integer p in one

simultaneous ARU instruction and flag those
P.E.'s where the remainder is zero. This

operation is then repeated in the flagged

processors, toggling a parity plane until all
processors produce a non-zero remainder. The

parity plane will contain a 1 or 0 indicating

whether the primes p divided Q to an odd or

even power. The difficulty with this method is

that the divide instruction must be repeated t

times where t is the largest power of p which

divides any of the 16,384 values of Q. This can

be rather large for small primes p. Certainly
the divide instruction must be executed at least

twice for each batch of Q's so the efficiency of the
algorithm will be at most .5.

A two step algorithm is employed which

avoides this difficulty. In the first step, the

values Q are divided by each p in the prime

base exactly once, and a table is collected in

each PE which contains the set of primes Pkl,
pk 2.... , Pkl which divides the Q in that
particular processor. This table contains

between 12 and 15 primes for each Q. Then the

single step method described above is applied to
the primes in the table in order to ascertain the

parity of the power of p which exactly divides

Q. This way the inefficiency of the single step
procedure only affects about 15 division

instructions rather than 4000. A serious

difficulty arises, however, when attempting to

implement this two step procedure. In the first

step, we will be dividing 16,384 Q's by a scalar

prime p setting a FLAG to 1 wherever the

remainder is zero. Then in all processors in

which FLAG = 1, the prime p must be put at

the end of a short table in the ARU. However,
the address of the end of the table is different in

each processor. The "lock step" SIMD character

of the MPP does not permit storing a value in
different locations in different PE's.

We are indebted to Kenneth Batcher of

Goodyear Aerospace for providing an ingenious

solution to this problem. We begin by dividing

the first 200 primes into the 16,384 Q's and

setting 200 bit planes to flag the values Q

which were evenly divisible by the primes. We

now go back through the 200 bit planes and

using them as flags, push onto the shift register

the least significant 2 bits of the primes that

evenly divide the Q's. At this point, the shift

register in each PE contains the table pkl(mod

4), Pk2(mod 4), ... pkl(mod 4) where the primes
pk i are those which exactly divide the Q in that
processor. The shift register is now stored in the

least significant 2 bits of each entry of the table

we are attempting to construct. Then the same

procedure is followed for the 3 rd and 4th

significant bits, the 5th and 6th bits and so on

until the 19th and 20th significant bits of the

primes. No prime in the factor base ever exceeds
20 bits. The total number of bit instructions

used in this complicated procedure is the same
as if there were a variable address store in the

SIMD instruction set. This routine was coded by
K. Batcher in PEARL on the PECU. The value

200 was chosen because this number of bits was

the most we could spare in the 1000 bit ARU.

This procedure would be much easier to program

on an MPP with larger memory.

This entire 3-step algorithm was executed by

an MPP program called FACTOR and was able

to do one complete batch of 16,384 values of Q
in about one second of MPP time. Since the

minimum number of division instructions

needed to accomplish this task is 16,384 x 4000

= 65,536,000, this parallel routine operates at

an average rate of 15.25 nanoseconds per
instruction. The central instruction used in the

program divided a 20 bit prime into a 100 bit Q

and this used an optimally coded PEARL
instruction which uses about two thousand 100

nanosecond cycles and this averages out to

12.21 nanoseconds per division instruction.

From this, it follows that the FACTOR program

operated at an efficiency rate of 12.21/15.25 or
about 80%.
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The program to generate the next batch of

Q's and A's took considerably longer than was

anticipated, mainly because of the tiny amount
of core allocated toeach P.E. Each STEP took

about .1 seconds, but since it took so much less

time than FACTOR, there was no driving need

to optimize this procedure.

3.3. The Gaussian Reduction. There was no

need to optimize this part of the program either.

For the earlier factorizations, a VAX program

was used to perform the reduction and it took

about 25 minutes of VAX time. By way of

comparison, over 6 hours of time was used to
perform the factoring on the MPP. On the other

hand, the very existence of 16,000 x 1,000 =

4,000 x 4000 bits of readily accessible memory
made the development of an MPP-based

Gaussian elimination program an irresistible

temptation. For this purpose, it would have

been preferable to have 4000 PE's each having

4000 bits of memory. Then, we could store each

row of the matrix in one bit plane of the MPP. In

this situation, we had to store one row of the

matrix in a quarter of a bit plane and this was

done by an arrangement of stripes in which

columns 0, 4, 8, ..., 124 of a128x128 bit

plane represented one row of the 0-1 matrix M.

With this arrangement, an entire 4000 x 4000
matrix of bits can be stored in the entire MPP

array memory, leaving very little memory for

anything else.

The usual procedure to do a Gaussian
reduction on a bit matrix is to do a series of

elementary row operations until a matrix is

obtained having a single 1-bit in each row and

column -- i.e, a permutation of the identity

matrix. One also performs the same elementary

row operations on a history matrix which was

set at the beginning to the identity matrix. If, at

anytime in this process, a zero row is produced,

the ones in the history matrix identify the rows

on the original matrix which were initially

linearly dependent. Of course, having the entire

memory of the MPP used to store the original

matrix M, there is no room for a history matrix.

Therefore, we utilized an in-place algorithm

first suggested to the author by Dennis

Parkinson and completely described in [2]. We

shall not give a detailed description of the

procedure in this paper, but the idea is to use the

"zero-space" produced by elementary row
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operations to store the "one-space" generated in

the history matrix.

Theoretically, one should be able to always
reducea nbyn bit matrix inl + 2 + 3 +... ÷

(n- 1) = n(n- 1)/2 elementary row operations

and if one row operation takes one MPP cycle of

100 nanoseconds and n = 4000, the time should

be just under one second. Of course, the tight

loop requires branch instructions and tests

which themselves require at least 100 nano-

seconds apiece. When the reduction program

GELIM finally worked, a stop-watch timing of

the program showed that usually 8 seconds were

required to reduce the sparse matrix generated

by CFRAC.

The operation of this program highlighted

an interesting but disturbing feature of

massively parallel processing. The factoring

and Q generation portions of the program were

completely fault tolerant. Every time a plane of

(Q, A) pairs were generated, the relationship
_Q - A 2 ( mod N) was tested and those

processors which failed the test were disabled
with a mask for the rest of the run. On one

occasion, there were 7 or 8 processors disabled

after several hours of MPP computation. In

GELIM, however, no such tolerance was

permitted. If just one bit were at fault anywhere

in the execution of the algorithm, the data

obtained by GELIM was rendered completely

useless. This actually occurred when the first
factorization of a never-before-factored number

was attempted. In August of 1985, The second
author was scheduled to deliver a talk at a

computational number theory conference in

Arcata, California, and on the morning of the

talk, GELIM was to triumphantly produce a set

of linearly dependent rows of the matrix M.

However, when the number of one bits in each

column of the dependent set was counted, about

3% of the 4000 columns was odd, not even as

required. Apparently, a single bit of the matrix

was in error somewhere in the algorithm and by

the end of the run, the fault spread to infect

about 6% of the column data. He never gave
that talk but rather rushed back to Goddard

where he quickly put together a hasty GELIM

on the VAX which produced the desired factors
within 2 weeks of the aborted talk. It wasn't

until last February when the first author found

the hardware bug in the MCU which caused the

occasional error and patched the MPP program

so that it would run correctly each time.



Perhaps error correction is really needed in the

ARU memory chip.

4. The Large Prime Variation. This is an

improvement of the basic factoring strategy
which has been utilized in all implementations

of CFRAC. If, after a quadratic residue has been

divided by all the admissible primes which are

less than a number x, the remaining unfactored

part F is less than x2, then F itself must be a

prime. Since F is not in the factor base, we call

these large prime factorizations. If two different

quadratic residues, Q1 and Q2, have large

primes factorizations with the same large prime

F, then the product Q1 * Q2 will have a
factorization of the form

a1 a2 a.
Q1Q2 = Pl P2 "Pj JF2"

where all the Pi are in the factor base. In the
factoring process, this means that when Q1 and

Qj have the same large prime factorization and
produce the 0-1 vectors e 1 and _2, the exclusive

OR of e_ and _2 can be added to the matrix M. In
practice, very few pairs of large prime factoriza-
tions have the same large prime F when F is

substantially larger than the largest prime in

the factor base Pk = x. In the MPP implementa-
tion of this variation, all the large prime

factorizations with F < x2/10 were saved using

a binary tree contained in the host VAX and
whenever a collision occured between two Q's,
the exclusive OR of the two variables was added

to the matrix M. This variation was added to the

MPP factoring program by the first author and

despite all the additional overhead involved

with the procedure, it improved the performance

by nearly 1.5 for numbers in the 60 digit range.

It is generally believed that the usefulness of

this variation will diminish as the size of the

number increases.

5. Results. The table below summarizes the

results of five factorizations of four different

large numbers. The first column defines the

origin of the number which was factored. In

every case, the expression in column 1 had some

algebraic and small known factors which were
divided out of the number before they were

processed by the MPP. Column 2 indicates the
size in decimal digits of the number after these
smaller factors were divided out. Column 3

indicates whether or not a straight CFRAC was

employed or the large prime variation, CFRAC-
LP. Columns 4 and 5 indicate the computer time

used. The large amount of VAX time needed for
the first two factorizations was due to an

inefficient proceedure for computing the product
of the Q's. Columns 6 and 7 lists the total

number of Q for which a factorization was

attempted and the rate at which the Q's were

processed. Note that the large prime variation
reduced substantially the number of Q's needed

for the total factorization.
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FIVE FACTORIZATIONS ON THE MPP

Number Digits Method MPPhours Totalhours Q attempted Qs/MPPsec

2 299-1 60 CFRAC 6.4 10.9 309,657,600 13,440

2 405- 1 60 CFRAC 4.0 11.5 182,894,592 12,701

5171+ 1 62 CFRAC 14.0 14.5 646,791,168 12,833

24°5- 1 60 CFRAC-LP 2.8 3.4 93,028,352 9,120

5149+ 1 64 CFRAC-LP 9.75 10.4 395,986,512 11,281
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ABSTRACT

A new methodology to increase the utility of the MPP has
been developed, and willbe presented here as an addition
to the currcnt methods of using the MPP. This
methodology provides for the development of an MPP-
side abstraction layer that is callable from any host-side
high level language. Routines in the abstraction layer have
the option of using a powerful software tool for accessing
the stager as "virtual memory". An additional abstraction
layer that allows for remote access to the MPP via DECnet
will be discussed. This integrated approach to
programming the MPP is a valuable tool for the
implementation of interactive user driven systems that
require the computational capabilities of the MPP aswell as
a controlled "user view". It is expected that this
methodology will be used to integrate the MPP into many
such systems, and thus promote greater use of the MPP
by scientific researchers who are accustomed to user
friendly environments.

Keywords: Software Design, Virtual Memory, Network
Communications, Interactive Systems

BACKGROUND

Although the architecture of the MPP is a departure from
the standard Von Neumann architecture, there is no
algorithm that can be implemented on the MPP that cannot
be implemented on a Von Neumann machine. The only
benefit of using the MPP for scientific applications is the
dramatic increase in execution speed that is gained for
some algorithms. Much research has gone into
transforming algorithms so that they can take advantage of
the MPP's parallel architecture. With the speed increase
that is attainable through the use of the MPP, it is possible
to perlorm heavy computational tasks interactively. It is
clear that the scientific community could greatly benefit
from such interactive computing power.

This effort represents the first use of the MPP as part of a
user friendly system which allows a researcher to activate
tasks on the MPP transparently. By using the MPP in this
manner, it is possible to provide the researcher with a set of
generic software tools which perform large computational

tasks within a user friendly interactive environment. The
MPP can thus provide a valuable service to the large
established group of users who are accustomed tc using
pre-packaged systems for scientific investigation.

The motivation for the work which led to this methooology
was the desire to use the MPP as part of an interactive
system which produces animated graphics on a specialized
graphics device. This project involved the development of
a generic software package that would transform any
scientific data set into a uniform quadrilateral mesh. It
became apparent that itwas impractical to implement such
an algorithm on the VAX, and that the MPP was well suited
for this algorithm, but it was not clear that the MPP could be
integrated into a large operational interactivesystem.

ENVIRONMENT

The MPP consists of a 128 x 128 array of microprocessors,
each of which is equipped with 1/8k bytes.of memory, and
an MCU (Main Control Unit) which commands the
processors in the array. The MCU has access to 64k of
memory, which is used for executable code, as well as
data. An auxilliary memory called the stager provides an
additional 2k per processor in the array. Eady in this
investigation it was decided that the algorithms to be
implemented on the MPP could not be limited to the 1/8k
memory per processor and that the stager would be used,
despite the obvious performance cost.

The front end machine for the MPP is a VAX 11/780. The
VAX iswell suited for user interaction, network access, and
I/O to a wide variety of devices. It can also support large
software systems that can not be ported to the MPP.
Typical MPP applications are loaded into the MCU by the
VAX, and activated. Control is not returned to the VAX
until the completion of the application running in the MCU.
tn order to support truly interactive systems, a mechanism
had to be devised to invoke various MPP primitives and
returncontrol to the VAX for further user interaction. At the
discretion of the user, the MPP would be re-activated to
perform another task. The overhead for MCU activation is
40 ms. This is negligible when used to return control to the
host machine for user interaction.

PRECA_)DING PAGE BLANK NOT FILMED
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MPP SHELL

The MPP Shell is a subroutine library of VAX callable
routines which activate Parallel Pascal subroutines that
execute in the MPP. An MPP Shell subroutine called
MPP_open is called to allocate the MPP, and perform
required buffer initialization. A subroutine called
MPP_close is used to perform all necessary termination,
including the deallocation of the MPP. The MPP_ioad
routine is used to load data into the array memory, and the
MPP_unload routine is used to unload data from the array
to the host memory. The remainder of the MPP Shell
subroutines perform computational tasks.

Each Parallel Pascal subroutine is called via a host side
header subroutine as pictured below, which issues a call to
CAD$START to activate the MPP-side routine.

X SIDESOFTWARESYSTEM

VAXSHELLMPPSHELL

MPPVIRTUALMEMORYS/W

When the Parallel Pascal subroutine has completed its
task, control is returned to the VAX via a call to a specially
written MCL routine called HALT. Once control has been

returned to the VAX, the applications program can interact
with the user so that he can select the next function to be
performed on the MPP.

When an MPP Shell subroutine is invoked, the VAX side
header routine packs any parameters that are needed by
the Parallel Pascal routine into a buffer. The header
routinethen transfers control to the Parallel Pascal routine

(via CAD$START), which reads the parameters from the
host using the standard MCU Host Memory Read
subroutine. These parameters may include indicies that
point to a static Parallel Pascal array. Thus, the result of a
previous MPP Shell subroutine invocation can be
referenced, and results of the present MPP Shell routine
can be placed in the static array for use by other routines.
A mechanism to reserve static memory via the Parallel
Pascal compiler was developed but is not discussed here;
interested persons are encouraged to contact the authors.

MPP-side subroutines that are not set up as VAX callable
may be called by the Parallel Pascal portion of an MPP
Shell subroutine. Thus, the large library of existing Paraltel
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Pascal and MCL subroutines can be used, and eventually
integrated into the MPP Shell Library.

A small FORTRAN code example is shown below, which
illustrates the simplicity with which a host side applications
program can allocate, use and deallocate the MPP.

CALL MPP_OPEN

CALL MPP LOAD(MAX_real, R1)

CALL MPP_LOAD(VAX_imaginary, I1)

CALL FFT(RI,I1, R2, 12)

CALL MPP_UNLOAD(R2, VAX_real)

CALL MPP_UNLOAD(12, VAX_imaginary)

CALL MPP_CLOSE

Where:

VAX_real and VAX_imaginary are 128 x 128 real
arrays

R1, I1, R2, and 12are integers that point to 128 x
128 real arrays in the static Parallel Pascal
array

MPP VIRTUAL MEMORY

As mentioned previously, many applications require more
than 1/8 k bytes of memory per processor. The MPP Virtual
Memory software that was developed allows for the
straightforward use of the staging memory as an extension
to the array memory. For applications that cannot avoid the
use of the stager, the MPP Virtual Memory package
handles page swapping between the array memory and
the stager. An LRU (Least Recently Used) algorithm was
developed to control swapping of data to and from the
array.

The static array mentioned above is used as a cache for the
MPP Virtual Memory package. The MPP Virtual Memory
package allows the programmer to use the stager and the
cache memory as a single integerated memory. For the
purposes of the present application, a granularity of 32 bits
planes per page was chosen. Before an MPP Shell routine
begins performing its task, it ensures that the desired
page(s) of MPP virtual memory are "paged in" by issuing a
call to "MPPVM'. MPPVM checks a list of pages that are
currently "paged in'. If the desired page is not in the



cach6, MPPVM performs all necessary array-stager data
movement to put the page in memory. This may involve
"paging out" a page that has not been used recently, in
order to make room for the desired page. MPPVM returns
the physical page number into which it has placed the
desired page. If the desired page is already in memory,
MPPVM returns immediately with the appropriate physical
page number.

MPPVM is sensitive to the access mode that is requiredby
the caller. Three modes are available: read, write, and
update. By specifying the access mode, MPPVM can
decide whether a given page needs to be physically
moved, and thus prevent unnecessary data movement.
The overhead incurred by MPPVM is negligible
considering the ammount of time that is required by a
single array-stager data move.

NETWORK ACCESS

Transparent network access to the MPP has been
established through the use of interprocess mailbox
communications supported by DECnet. A process on a
remote node invokes a COM file on the MPP VAX which
implicitly logs on to the MPP VAX and calls the MPP Shell.
Packets are exchanged between the two VAXes to pass
data and control information. This technique has been
used to support interactive MPP applications acoross the
network.

CONCLUSION

The MPP is a valuable resource for heavy computational
tasks which is needed by the scientific community. The
tools that have been presented here promote the rapid
implementation of user friendly systems that can access
the MPP transparently. The power of the MPP can thus
become more readily available to a larger user community
as an integrated component of user friendly systems.
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ABSTRACT

MPP Parallel FORTH is a derivative of FORTH-

83 and Unified Software Systems' Uni-FORTH.
We will describe in this presentation the extension
of FORTH into the realm of parallel processing on
the MPP. With few exceptions, Parallel FORTH
was made to follow the description of Uni-FORTH

as closely as possible. Likewise, the parallel
FORTH extensions were designed as
philosophically similar to serial FORTH as
possible. The Massively Parallel Processor (MPP)
hardware characteristics, as viewed by the FORTH
programmer, will be discussed. Then a description
will be presented of how parallel FORTH is
implemented on the MPP.

Keywords: FORTH, parallel languages, SIMD,
MPP.

INTRODUCTION

The MPP is primarily capable of two types of
processing, serial or scalar processing, and parallel
processing. The MPP contains an array of 16,384
processing elements(PE's), the array unit. They are
all given the same instruction at the same time;

thus computing in this array can be viewed as serial
processing on a single processor. Yet, processing
is actually happening on all 16,384 processors at
the same time. Each processor is a bit serial

processor with 1024 bits of memory. Thus, the
entire array contains 2 million bytes of memory
and can be viewed as 1024 bit planes of 128x128
bits each.

The MPP array is a square mesh of processors,
where each processor can pass data to its four
adjacent processors. The edges of the mesh can be
connected in various ways to form several other
topologies. These topologies consist of such
arrangements as a simple square, a toms, cylinders,

or a helix. This communication arrangement
allows the programmer to move, simultaneously,
as much as 16,384 bits of data 64 processors away
from their original source processor. These moves
may be in one of four directions - north, west,
south, and east.

As well as having a main control unit for scalar
processing and an array unit for processing 16,384

elements of data in parallel, the MPP has a staging
memory. This memory is the means by which data
is moved from the host computer (VAX-11/780)
into the array unit memory. The staging memory
contains 32M bytes of memory, allowing it to be
configured as 16,384 bit planes of 128x128 bits.

Therefore, the MPP, as viewed by the FORTH
user, consists of essentially three main
components: the main control unit (MCU) (the
scalar processor and controller of the array), the
array unit (ARU) ( for parallel processing of data ),
and the staging memory (STG) (primarily used for
I/O and as a large external bit plane memory).

If every processor had to perform every instruction
given to it, it would be of little use as a general
purpose computer. Conditional processing
alleviates this problem. Conditional processing (
such as the execution of an 'IF ... ELSE ... THEN'

statement) on the array divides the processor into
two groups of processors - those processors for
which the condition is true and those for which the

condition is false. Since processors can be
individually told not to execute the current
instruction, the processors for which the condition
is true will only execute those instructions between
the IF and the ELSE and those processors for which
the condition is false will only execute those
instructions between the ELSE and the THEN.

Thus, through prudent use of conditional
statements, the processors can be programmed to
perform a range of different functions within the

same general time span.

Parallel FORTH is implemented as simply and as
straightforward as possible. A Uni-FORTH system
is implemented on the MCU. Parallel extensions
have been added to the kernel under a new

vocabulary called PARALLEL. Context switching
has been simplified so that the FORTH word '{'
switches to the parallel vocabulary and '}' switches
back to the vocabulary that was in use before the
switch to the parallel vocabulary. This allows the
user to redefine serial words as analogous parallel
words under a parallel context, thus making it
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easier for the FORTH user to remember the new

parallel words. For example, '+' normally means
to add two numbers that are on the data stack, but

in the parallel context, '{ + }', means add two
128x128 arrays of numbers on the array stack,
which is in the ARU memory.

Two new stacks have been added to parallel
FORTH that are not in serial versions of FORTH.

These two stacks are the array stack (A) and the
mask stack (M). The mask stack is not normally
used or seen by the FORTH programmer. It is
used to facilitate nested conditional statements,
such as 'IF ... ELSE ... THEN' or 'BEGIN ...

UNTIL'. The array stack is extensively used by the
FORTH programmer, since it is the parallel
equivalent of the MCU's data stack. Most
operations that can be performed on elements of the
data stack have corresponding operations that can be
performed in parallel on the array stack, such as +,
*, DUP, DROP, and ROT. There are a few other

operations that are peculiar to the array stack.

The following sections will discuss in more depth
the parallel operations that have been implemented
to extend FORTH into the realm of parallelism.

VOCABULARY AND DATA
DEFINITION

In MPP Parallel Forth there is a vocabulary called
PARALLEL. All new parallel words are in this
vocabulary except PE control unit (PECU)

primitive words and mask stack operations. As
pointed out in the introduction '{' and '}' are used

to enter and exit the parallel vocabulary. The
following is a definition that will manipulate the
MCU data stack:

: MULTADD * + ;

While the next definition manipulates the ARU
array stack:

: MULTADD { * + } ;

Parallel variables can be allocated in either the array
or the staging memory. If a user wants to allocate
a 128x128 array of 7-bit values named AR1 in the

staging memory, the following is used:

7 STG VARIABLE AR1
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If a user wants to allocate a 128x128 array of 11-bit
values in the array memory named AR2, the
following is used:

11 ARU VARIABLE AR2

The definition of parallel constants is similar to
defining variables, except the user puts an array on
top of the array stack and then executes the
statement:

13 ARU CONSTANT CON1

to create a 128x128 array of 13-bit constants.
Likewise vectors and arrays of 128x128 arrays may
be defined with VECTOR and MATRIX,

respectively. A vector of 20 8-bit 128x128 arrays
can be defined with the following statement:

20 8 ARU VECTOR VEC1

The word ALLOT will allocate variable space in
either the stager or the array if it is preceded by the
word STG or ARU, respectively. ALLOT is used
by all the above-mentioned definition words.

PARALLEL I/O

Parallel files can be stored on the host in either

matrix or image format. Each format allows for 8-
bit, 16-bit and 32-bit values. A matrix format file

contains multiple arrays of 128x128 values. An

image format file contains multiple images of
512x512 values. The following command:

CHANA IMAGE8 OPEN WHAT.DAT

opens the file 'what.dat' as an image file of images
with 8-bit values. LOAD is then used to read the

matrix or image into a previously defined staging
memory array. An image from an image file of 8-
bit values should only be loaded into a VECTOR
or MATRIX that has at least 8x16 or 128 bits
allocated to it. The command to read a matrix into

a stager array is:

V1 3 LOAD

This loads the third matrix of the current file into

variable V1. To store an image into a file, the
word STORE is used (i.e., V1 3 STORE ).



MEMORY OPERATIONS

Memory operations are used to move data between
the three MPP memories: the MCU, the ARU, and
the staging memory. The word '@' fetches arrays
from array variables in the stager and the ARU
memory and puts them on the array stack. The
word '!' stores an array from the array stack into an
array variable in the stager or ARU memory. The
word 'SCALAR' takes a value from the data stack

in the MCU memory, broadcasts it to all PE's, and
produces an array on top of the array stack that has
the same value for all elements of the array. Also,
when the context is the parallel vocabulary, any
literals are compiled into constants that will be

sent to the top of the array stack as a scalar value
during execution. Operations such as GMAX,
GMIN, and GOR can reduce an array of values into
a scalar value that can be put onto the data stack.

ARRAY STACK OPERATIONS

Most array manipulation occurs on the array stack.
The array stack consists of a stack of descriptors in
MCU memory and the actual bit plane stack in the
ARU memory. The array stack is manipulated by
operations very similar to those used on the data
stack. These operations consist of words such as
DUP, DROP, SWAP, OVER, ROT, PICK, and

ROLL. In addition to the standard stack operations
there are also operations that are peculiar to the
array stack. They consist of the following words:
-NDROP, NDROP, A@, >A, ZERO, EXTRACT,
SLIDE, EXG, CROSS, and TOPOLOGY.

NDROP drops the top n elements of the array
stack. -NDROP skips the first nl elements of the
stack and drops the next n2 elements of the array
stack. 'A@' copies the descriptor off of the MCU

array stack onto the data stack. A parallel array
descriptor consists of two values: the address of the

least significant bit plane of the array(LSB) and the
number of bit planes in the array(LEN). '>A'
creates an array of n bit planes on the array stack,

where n is taken from the top of the data stack.
ZERO is the same as '>A' except the bit planes are
initialized to zero. EXTRACT extracts a field of

bits from the second element of the array stack and
inserts it into a field of the same size in the top
element of the stack. SLIDE slides the top element
of the array stack across the array of PE's. EXG

exchanges data in the top elements of the array
stack among PE's of the ARU. CROSS exchanges
data from the top elements of the array stack with
the second elements of the array in different PE's of

the ARU. The TOPOLOGY operation changes the
topology of the ARU.

ARITHMETIC, LOGIC, AND
COMPARISON OPERATIONS

All the operations in this section deal primarily
with the elements on the top of the array stack.
Basically they are analogous to the corresponding
operations that operate on the top of the data stack.
The difference is that operations on the array stack
perform 16,384 operations at the same time instead
of one at a time and values on the array stack can
have variable numbers of bits instead of a fixed
number such as 8, 16, or 32.

Normally operations on the data stack are either
single or double precision. On the array stack,
however, operations are classified as either fixed or

variable precision. A fixed precision operation
requires that both operands have the same length
and that their result is the same length. A variable
precision operation may operate on operands whose
lengths are different. The result of such operations
has a length that is dependent on both the specific
operation and the length of the operands. All basic
operations discussed here have a fixed precision
operation. Only a few operations have both a fixed

and a variable precision form of operation. These
operations are +, -, *,/, MOD, and/MOD. Their
variable precision forms are ~+, ~-, ~*, ~/, ~MOD,
and -/MOD.

The result of a ~+ or a ~- operation has a length
equal to one plus the maximum of the two

operands. The result of a ~* operation has a length
equal to the sum of the length of the two operands.
The length of result of a -/ operation is the
difference between the length of the dividend

operand and the length of the divisor operand. Note
that the length of the dividend must be larger than
that of the divisor. The result of the -MOD

operation has a length equal to the length of the
divisor operand. Since the result of the ~/MOD
operation is the result of the ~/operation followed

by the ~MOD operation, the lengths of the results
are the same as described for ~/and -MOD.

The fixed precision only operations are MAX,
MIN, ABS, NEGATE, 1+, 1-, 2/, 2*, AND, OR,
XOR, and NOT. Three special operations find the
aggregate result and place it on the data stack.
These global operations are global
maximum(GMAX), global minimum(GMIN), and
global or(GOR).
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Comparison operations differ slightly from the
other operations in this section in that they result
in a value of length 1. These operations are <, =,
>, 0<, 0=, and 0>.

CONTROL OPERATIONS

Control operations cause certain portions of code to
be executed on some data and not on others.

Parallel control is quite different from serial
control. In serial control, condition evaluation

determines whether or not a certain piece of code
will be executed. In parallel control, both the code
corresponding to the true condition and the false
condition may have to be executed. Some of the
processors must be turned off during the execution
of the code for the true condition, then turned on for
the execution of the code for the false condition.

This is accomplished with a mask bit. It is set to
one in processors whose data satisfy the condition,
and to zero in those whose data does not. Thus

only those processors that satisfy the condition
execute the code for the true condition. The mask

bit is then complemented and only those processors
that did not satisfy the condition will execute the
code for the false condition. As with execution of
serial conditions, parallel conditions can be nested.
Therefore, there is a mask stack. Mask stack

primitive operations are used to implement the
operations in this section.

The basic conditional structure is the IF ... ELSE

... THEN statement. The IF word duplicates the
top element on the mask stack, takes the least

significant bit of the top element of the array stack,
and ands it to the top element on the mask stack.
The ELSE word complements the top element of
the mask stack. And the THEN word drops the top
element of the mask stack.

The parallel conditional loop structure is also
somewhat unusual. It continues to execute as long
as there is a processor that has not met the

condition to terminate the loop. The two types of
loops are the BEGIN... UNTIL and the BEGIN ...

WHILE ... REPEAT. The BEGIN word duplicates
the top element of the mask stack. The REPEAT
word marks the end of the loop. The WHILE word

ands the least significant bit of the top element of
the array stack to the top element of the mask stack

and terminates the loop if no processor has the top
element of the mask stack equal to one. The

UNTIL word is the same as WHILE except the
least significant bit of the top element of the array
stack is complemented before it is anded to the top
element of the mask stack.
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Note that only certain operations are maskable.

Therefore, one should be aware that operations may
execute when the processor was masked out because

the operation was not maskable. Generally, only
operations that do not change the number of
elements on the array stack or the order of the
elements on the array stack are maskable. Thus,
most stack manipulation operations and two
operand operations are not maskable. See the MPP

Parallel FORTH Word Reference for more specific
details.

PECU AND MASK STACK PRIMITIVES

The PECU and mask stack primitives are not
meant to be used by the general FORTH
programmer. They are used by the primary parallel
FORTH words to initiate actions to be performed
in the ARU. If it is necessary to use them, they
are described in the MPP Parallel FORTH word
reference.

MPP PARALLEL FORTH WORD
REFERENCE

Context Changing Words

PARALLEL

'PARALLEL' is the vocabulary that
contains all the words that act on data in the MPP

array unit.

{

This changes the context of word searches
to the 'PARALLEL' vocabulary.

}

This returns the context to that specified
prior to the change to the 'PARALLEL'
vocabulary.

Arithmetic Words

+ (A: al(n) a2(n) - A: a3(n) )



This adds al and a2, which are the same
size and produces a3, which is that size.

(A: al(n) a2(n) -- A: a3(n) )

This subtracts a2 from al, which are the
same size and produces a3, which is that size.

* (A: al(n) a2(n) -- A: a3(n) )

This multiplies al by a2, which are the
same size and produces a3, which is that size.

/ (A: al(n) a2(n) -- A: a3(n) )

This divides al by a2, which are the same
size and produces a3, which is that size.

MOD (A: al(n) a2(n) -- A: a3(n) )

This divides al by a2, which are the same
size and produces the remainder a3, which is that
size.

/MOD (A: al(n) a2(n) -- A: a3(n) a4(n) )

This divides al by a2, which are the same
size and produces a3, the remainder, and a4, the
quotient, which are of that size.

MAX ( A: al(n) a2(n) -- A: a3(n) )
{maskable}

This finds the maximum of al and a2,
which are the same size and produces a3, which is
that size.

GMAX ( A: al(n) -- S: m ) {maskable}

This finds the global maximum of the al
and places it on the data stack as a scalar value.

MIN ( A: al(n) a2(n) -- A: a3(n) )
{maskable}

This finds the minimum of al and a2,
which are the same size and produces a3, which is
that size.

GMIN (A: al(n) -- S: m ) {maskable}

This finds the global minimum of the al
and places it on the data stack as a scalar value.

ABS ( A: a(n) -- A: a(n) ) {maskable}

This finds the absolute value of 'a' and
replaces 'a' on the stack.

NEGATE (A: a(n) -- A: a(n) ) {maskable}

This finds the 2's complement of the value
of 'a' and replaces 'a' on the stack.

1+ (A: a(n) -- A: a(n) ) {maskable}

This increments the value of 'a' and places
it back on the stack.

1- (A: a(n) -- A: a(n) ) {maskable}

This decrements the value of 'a' and places
it back on the stack.

2/ (A: a(n) -- A: a(n) ) {maskable}

This shifts a(n) to the right.

2* (A: a(n) -- A: a(n) ) {maskable}

This shifts a(n) to the left.

~+ (A: al(n) a2(m) -- A: a3(max(n,m)+l) )

This adds al to a2 and produces a result,
a3, which has a size that is the maximum of the
sizes of al and a2, plus 1.

~- (A: al(n) a2(m) -- A: a3(max(n,m)+l) )

This subtracts al from a2 and produces a
result, a3, which has a size that is the maximum of
the sizes of al and a2, plus 1.

~* (A: al(n) a2(m) -- A: a3(n+m) )

This multiplies al by a2 and produces a
result, a3, which has a size that is the sum of the
sizes of al and a2.

~/ (A: al(n) a2(m) -- A: a3(n-m) )

This divides al by a2 and produces a
result, a3, which has a size that is the difference of
the sizes of al and a2.

~MOD (A: al(n) a2(m) -- A: a3(m) )

This divides al by a2 and produces the
remainder, a3, which has a size of a2.

~/MOD (A: al(n) a2(m) -- A: a3(n-m)a4(m) )
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This divides al by a2 and produces a
remainder, a3, which has a size the same as a2 and
a quotient, a4,which has a size that is the difference
of the sizes of al and a2.

Logical Words

AND ( A: al(n) a2(n) -- A: a3(n) )

This ands al and a2, which are the same
size and produces a3, which is that size.

OR ( A: al(n) a2(n) -- A: a3(n) )

This ors al and a2, which are the same
size and produces a3, which is that size.

GOR (A: al(n) -- S:m ) {maskable}

This finds the global 'or' of the al and
places it on the data stack as a scalar value.

XOR ( A: al(n) a2(n) -- A: a3(n) )

This xors al and a2, which are the same
size and produces a3, which is that size.

NOT ( A: a(n) -- A: a(n) ) {maskable}

This finds the complement value of 'a' and
places it back on the stack.

Comparison Words

< (A: al(n) a2(n) -- A: a3(1) )

This determines if al is less than a2, and
produces a bit plane that is 1 where it is true and 0
where it is false.

= ( A: al(n) a2(n) -- A: a3(1) )

This determines if al is equal to a2, and
produces a bit plane that is 1 where it is true and 0
where it is false.

> ( A: al(n) a2(n) -- A: a3(1) )

This determines if al is greater than a2,
and produces a bit plane that is 1 where it is true
and 0 where it is false.

0< (A: al(n) -- A: a2(1) )

This determines if al is less than 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.
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0= (A: al(n) -- A: a2(1) )

This determines if al is equal to 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.

0> (A: al(n) -- A: a2(1) )

This determines if al is greater than 0, and
produces a bit plane that is 1 where it is true and 0
where it is false.

Stack Operation Words

DUP (A: a(n) -- a(n)a(n) )

Duplicates the top element on the array
stack.

DROP (A: a(n)-- )

Drops the top element on the array stack.

NDROP ( S: n A: a(m)...a(p) --- A: a(m) a(q)
)

Drops the top n elements of the array
stack.

-NDROP (S: nl n2 A: al(pl)...a2(p2)...a3(p3)
--- A: al(pl) a2(p2)...a3(p3) )

Skips the first nl elements of the array
stack and drops the next n2 elements of the array
stack.

SWAP ( A: al(n) a2(n) -- A: a2(n) al(n) )

Swaps the top two elements on the array
stack.

OVER ( A: al(n) a2(n) -- A: a!(n) a2(n) a!(.n_) )

Copies the second element on the array
stack to the top of the stack.

ROT ( A: al(n) a2(n) a3(n) -- A: a2(n) a3(n)
al(n) )

Moves al to the top of the array stack.

PICK ( S: m A: al(n) ... a2(n)
-- A: al(n) ... a2(n) al(n) )

Copies the mth element of the stack to the
top of the stack. ( 1 PICK is the same as OVER. )



ROLL ( S: m A: al(n) ... a2(n) a3(n)
-- A: ... a2(n) a3(n) al(n) )

Moves the mth element of the stack to the

top of the stack. ( 3 ROLL is the same as ROT. )

DEPTH ( -- S: n )

Returns the number of elements on the

array stack.

A@ (A:a(nl) --- S: n2nl )

Copies the first descriptor on the array
stack onto the data stack.

>A (S: n --- A: a(n))

Creates an element on top of the array
stack that has n bit planes.

ZERO ( S: n --- A: a(n) )

Create an element of size n that has a

value of zero onto the top of the array stack.

EXTRACT ( S: ml m2 n A: al(nl) a2(n2)
--- A: al(nl) a2(n2) )

Extracts a field of n bits of al(nl) starting
at ml and places it in a2(n2) starting at m2.

SLIDE (S:nd A:a(p) -- A:a(p) )

Slides 'a' n PE's in the direction designated
by d. East if d=0, west if d=l, south if d=2, and
north if d=3.

EXG (S: ml m2nd A: a(n) -- A: a(n) )

Exchanges elements of 'a' n PE's apart in
the direction designated by d. East/west if dr0,
south/north if d=2. The addresses of mask bit

planes are ml and m2. The mask ml determines
which PE's accept data during the east or south

portion of the move and m2 determines which PE's
accept data after the west or north portion of the
move.

CROSS ( S: ml m2 n d A: al(n) a2(n)
-- A: al(n) a2(n) )

Exchanges elements of al with a2 n PE's

apart in the direction designated by d. East/west if
d=0, south/north if d--2. Elements of al move to
the east or south and elements of a2 move to the

west or north. The addresses of the mask bit planes

are ml and m2. The mask ml determines which

PE's accept data during the east or south portion of
the move and m2 determines which PE's accept data
after the west or north portion of the move.

TOPOLOGY ( S: n --- )

The number n designates the topology of
the array when an EXG, SLIDE, or CROSS is
performed.

To_Do1ogy ]qorth/South
Connection Connection

0 None None

1 None Cylinder
2 Cylinder None
3 Cylinder Cylinder
4 Open-spiral None
5 Open-spiral Cylinder
6 Closed-spiral None
7 Closed-spiral Cylinder

Memory Operation Words

@ ( S:m --- A: a(n) ) {maskable}

Moves an array variable described by a
descriptor at address m onto the array stack.

I (S:n A: a(n)--- ) {maskable}

Moves an array from the array stack into
an array variable described by a descriptor at address
m.

SCALAR ( S: <scalar value> --- A: a(n) )

{maskable}

Broadcasts a scalar value into array 'a' of
all PE's.

L_R_

Compiles a constant into a word that will
be placed onto the array stack during execution, or
will immediately place it on the stack during
interpretation.

LIT

This is the execution time routine used to

place a constant, compiled into the code, onto the
array stack.
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DESC (S:n --- S:n2nl )

Fetches the descriptor at address n and
places it on the data smock. The address of the least

significant bit plane (LSB) of the variable is n2 and
nl is the size of the variable.

Control Words

IF (A:a(n) M:ml --- M:ml M:rn2 )

Creates a new layer on the mask smock that
is the result of anding the least significant bit plane
of 'a' and ml.

ELSE ( M:m --- M:m )

Complements the value of the top element
of the mask stack.

THEN ( M: m --- )

Drops the top element of the mask stack.

BEGIN ( M:ml --- M:mlml)

Duplicates the top element of the mask
stack.

WHILE (A:a(n) M:ml --- M:ml )
or(A:a(n) M:ml --- )

Ands the least significant element of 'a'
and ml. If no element of ml is equal to 1, the
loop is terminated.

REPEAT

Marks the end of

BEGIN...WHILE...REPEAT loop.

UNTIL ( A: a(n) M: ml --- M: ml
)

or(A:a(n) M:ml --- )

M: m2

Ands the complement of the least
significant element of 'a' and ml. If no element of

ml is equal to 1, the loop is terminated.

I/O Words

MATRIX8
MATRIX 16
MATRIX32

File types for files that contain 128x128
arrays of 8, 16, or 32-bit values.
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IMAGE8
IMAGE16
IMAGE32

File types for files that contain 512x512
images of 8, 16, or 32-bit values.

LOAD (S:n2nl --- )

Loads an array nl or image nl from the
currently opened file into the designated bit plane
described by the descriptor at address n2.

STORE (S:n2nl --- )

Stores the designated bit planes described
by the descriptor at address n2 into an array nl or
image nl of the currently opened file.

Defining Words

VARIABLE ( S:n f ---)

Allocates an n bit plane variable array in
either the stager or the array.

CONSTANT ( S: n f A: a(n) --- )

Allocates an n bit plane constant array in
either the stager or the array and loads it with the
top element of the array stack.

VECTOR (S:mnf---)

Allocates a vector of m n bit values in

either the stager or the array.

MATRIX (S:mlm2nf---)

Allocates an mlxm2 matrix of n bit

values in either the stager or the array.

Compiler Words

ALLOT (n f ---)

Allocates n bit planes in either the array
(ARU) or the stager (STG).

ARU

Indicates that the desired variable will be

allocated in the array.



STG

Indicatesthatthedesiredvariablewill be
allocatedinthestager.

PECU Primitive Words

PECU ( S: <PECU address> -- )

The word 'PECU' takes an address off the

MCU data stack and places it in register 'SPE',
which starts the PECU at that address.

S>C ( S: <64 bit scalar> <LSB of scalar> --- )

The word 'S>C' loads the LSB of a scalar
into PE0. The 64-bit scalar value will be loaded

into the common register from the data stack.

C>S (--- S: <64 bit scalar> <LSB of scalar> )

The word 'C>S' stores the 64-bit return

register A value on the data stack followed by the
value 64.

A>PE2 ( A: <descriptor> --- )
A>PE4 ( A: <descriptor> --- )
A>PE6 ( A: <descriptor> --- )

Takes 2 descriptors from the array stack
and places them into registers PE2-PE3, PE4-PE5,

or PE6-PE7, respectively. Each descriptor consists
of a 16-bit LSB and a 16-bit size.

S>PE2 ( S:nln2 --- )
S>PE4 ( S:nln2 --- )
S>PE6 ( S:nln2 --- )

Takes 2 words from the data stack and

places them into registers PE2-PE3, PE4-PE5, or
PE6-PE7, respectively.

Mask Stack Operations

A>M ( A: a(n) M: ml --- M: ml )

Ands the least significant bit plane of a(n)
to ml. The mask stack pointer is maintained in
PE1.

M>A ( M:ml --- M:ml A:a(1) )

Copies the top bit plane of themask stack
onto the top of the array stack.

MDROP (M:ml--- )

Drops a mask from the mask stack.

MDUP (M:ml --- M:mlml )

Duplicates top element on mask stack.
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TECHNICAL SUMMARY

THE MASSIVELY PARALLEL PROCESSOR

The Massively Parallel Processor (MPP),
an advanced computer architecture termed
single-instruction stream multiple-data
stream (SIMD), shows promise of
delivering enormous computational power
and at lower cost than other existing
architectures. Its computational element,
the array unit, consists of a 128 by 128
array of small 1-bit processors, each
containing 1,024 bits of local memory,
and having nearest neighbor connectivity.
A secondary storage unit, the staging
memory, holds 32 megabytes of data and
connects to the array memory via an 80-
megabyte-per-second data path. An array
control unit broadcasts control signals to
all processors in the array unit. The MPP
is a back-end processor for a VAX-11/780
host, which supports its program
development and data needs. (See Figure
1.)

The MPP was built for the Goddard Space
Flight Center by Goodyear Aerospace
Corporation and delivered in May 1983.
At that time, the construction of a digital
processor using the very high degree of
parallelism embodied in the MPP had not
been previously attempted.

MPP Software

Since its delivery to Goddard, an
extensive language system and a unique
operating system have been implemented
for the MPP. Dozens of teams of scientific

investigators who are developing, testing,
and running parallel algorithms rely on
this system software repetoire daily. The
initial high-level language implemented in
1983 was Parallel Pascal. This language
was designed to be independent of
computer architecture, thus allowing
portability of applications programs
between diverse parallel computers having
Parallel Pascal compilers. Experience
gained in the development and use of this
approach revealed that the MPP's 128- by-
128 square grid architecture could not

easily be hidden from the programmer by
using current compiler writing technology.
A modified language, MPP Pascal, was
then implemented that is architecturally
dependent, possessing important semantic
features that allow the programmer to
make very efficient use of the hardware's
capabilities. The MPP Pascal compiler is
capable of producing highly optimized
code and is flexible enough to allow easy
modification. The MPP is also

programmable in assembly language.

The MPP operating system provides
interactive debugging aids in addition to
support for running applications code.
The software that performs these t _ 's is
shared by all MPP users, greatly ret ,ng
the demand on the host's main memory.
The debugging aids include performance
monitoring, error reporting of MPP
hardware detected faults, breakpointing,
single-step and status display. A first-
come-first-served queue is the central
arbiter controlling user access to the MPP.

All MPP applications programs must be
prepared as two parts. One part runs in
the MPP control unit; the other part runs
on the host. They are linked together
through a message passing system. A
master/slave control relationship exists
between the MPP and the host. The host

resident program is the highest level of
control. This program interacts with the
user and starts MPP programs. MPP
programs, in turn, use the host as an I/O
server, directly accessing the host's disk
and image analysis terminals through an
extensive set of I/O service routines.

A device driver that communicates directly
with the MPP hardware runs at the lowest

level in the host operating system. This

driver is the hub of the entire system,
controlling the execution of programs in
the MPP, as well as the flow of data

throughout the system. The bulk of the
operating system interacts directly with
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this device driver to accomplish tasks in
support of a running application such as
initializing the hardware, loading
programs, starting and stopping
programs, reading and writing data, and
delivering messages between running
programs in the host and the MPP.

A number of libraries of computational
subroutines are supported. One type
holds more than 270 microcoded
subroutines that define the actual
instruction set of the MPP. These include
the basic arithmetic and transcendantal

functions, as well as multi-precise
arithmetic and special user-written
instructions. A second type of library
holds MPP Pascal callable subroutines

including fast fourier transforms, a
random number generator, a sort
computation package, linear algebra
routines, and utility programs. Another
set of libraries holds I/O subroutines that
control the movement of data within the

system.

For many applications, having only 1,024
bits of memory available to each of the
16,384 MPP processors has been a
serious constraint. The memory chip
technology available in 1980 when the
system was designed imposed this
limitation. As an alternative to an

expensive hardware upgrade, a Bit-Plane
I/O software package was developed that
treats the staging memory as individual
bit-planes. A system was implemented
that provides each processor with 16K bits
of virtual array memory. The penalty is an
increase in memory access time from. 1
microseconds to 25 microseconds per bit
plane. However, many applications
benefit from this virtual memory, as they
effectively overlap computation with data
transfer. In addition to Bit-Plane I/O,

another system, SMM I/O, gives the user
access to the powerful data reformatting
capabilities of the staging memory.

Two MPP simulation environments have

been developed and distributed to remoted
user sites. One is the MPP Simulator,
which supports the development, testing,
and refinement of MPP Pascal, or

assembly language applications programs
on any VAX operating under VMS. It
allows a user the convenience of a local
dedicated MPP that doesn't need be shared

with other users. In addition, its use at

remote sites off-loads program preparation
work from the MPP/VAX system at
Goddard. Code that runs on the Simulator

will run on the MPP after adjusting any
references to the size of the array unit
(usually simulated as a 16 x 16 array to
speed execution).

A second simulation tool, the Parallel
Pascal Translator, takes Parallel Pascal

source code as input and produces
equivalent serial Pascal source code as
output. The serial Pascal can be compiled
and executed using a standard Pascal
compiler system. The Translator allows
the development, testing, and refinement
of applications programs on most
computers that have a Pascal compiler.

MPP HARDWARE

Array Unit

The Array Unit, (the 128 x 128 processing
element (PE) array) supplies the MPP's
computational power. Each PE has a local
1,024-bit random access memory and is
connected to its four nearest neighbors--
north, south, east, and west. Opposite
array edges can be connected together to
form either a plane, a horizontal cylinder,
a vertical cylinder, or a torus. Arithmetic
and logic in each PE are performedin bit-
serial manner. All operands are located in
the 1,024-bit local memory. The cycle
time is 100 nanoseconds. Table 1 shows

the raw computing speeds for selected
arithmetic operations. The data-bus states
of all 16,384 PEs are combined in a tree of
inclusive-or logic elements whose single
wire output is used in the Array Control
Unit for operations such as finding the
maximum or minimum value in parallel of

an array.



MPP Processing Element: A single
PE is shown functionally in Figure 2. The
P-register, together with its input logic,
performs all Boolean logic functions on
two variables and can also receive data

from the P-register in any one of its four
nearest neighbors. The A-, B-, and C-
registers, the shift register, and associated
logic form an arithmetic unit. The G-
register controls masking of arithmetic,
logic, and routing operations. (Unmasked
operations are performed in all PEs.
Masked operations are only performed in
those PEs where the G-register is set.)
The S-register is used to shift data to and
from the Staging Memory without
disturbing PE operations. A custom
integrated circuit (IC) holds eight PEs,
exclusive of the 1,024 bits of random

access memory, which is on a separate IC
chip. A one bit wide bidirectional data-
bus connects the memory and the internal
components of the PE.

Microcircuit Technology: All
components of eight PEs, exclusive of
random access memory, are packaged on a
custom integrated circuit. This chip,
containing a 2-row by 4-column array of
PEs, uses high speed complementary
MOSFET (HCMOS) technology.

Array Control Unit

The Array Control Unit broadcasts control
signals and memory addresses to all PEs
in the Array Unit and receives Array Unit
status bits. It is designed to perform
bookkeeping operations (address
calculation, loop control, branching,
subroutine-calling, etc.), and control the
Array Unit simultaneously. It contains
three parts: (1) the Main Control Unit, (2)
the PE Control Unit, and (3) the I/O
Control Unit.

The Main Control Unit executes the

application program stored in its program
memory. It performs the scalar arithmetic
operations required, calls the PE Control

Unit for all array logic and array arithmetic
operations, and calls the I/O Control Unit
for all I/O operations. Both sets of calls
are queued to await execution while the
Main Control Unit moves on to generate
other calls.

The PE Control Unit generates all Array
Unit instructions except those pertaining to
the S-register (data I/O). It executes
microcoded routines stored in its program
memory to perform all array operations
required by applications programs.

The I/O Control Unit controls the shifting
of I/O data through the Array Unit S-
registers, as well as the transfer of I/O data
between the S-registers and the Array Unit
memory. It executes I/O channel control
programs stored in the Main Control
Unit's program memory.

Staging Memory

The MPP system includes a Staging
Memory for buffering Array Unit data.
This memory provides both the "corner
turning" function, which converts
conventional byte- or word-oriented data
into the bit-plane form needed by the
Array Unit, and the "multi-dimensional
access" function, which allows large
multi-dimensional arrays of data located in
the Staging Memory to be read out or
written in along arbitrary orderings of
array dimensions. The current capacity of
the Staging Memory is 32 megabytes and
is upgradable to 64 megabytes.

Data moves between the Array Unit and
the Staging Memory via 128 parallel lines.
The upper limit on the transfer rate is 1.28
billion bits/second. Goddard's MPP

currently supports .64 billion bits/second.
Data movement in both directions can be

overlapped with processing.

Host Processor

A DEC VAX-11/780 computer manages
data flow between MPP units, loads
programs into the Control Unit, executes
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systemtest anddiagnosticroutines, and
providesprogramdevelopment facilities.
The MPP is interfaced to the VAX through
a 5 megabytes/second DR-780 channel.
Remote access to the VAX is provided
through ARPANET, SPAN, TELENET,
BITNET, and dial-in.

Additional Information

MPP users are selected from those who

submit proposals in response to the open-
ended NASA Space Science and

Applications Notice: "Computational
Investigations Utilizing the Massively
Parallel Processor (MPP)." Thirty-nine
scientific investigators from across the
United States currently belong to the MPP
Working Group. For additional
information, interested parties should
contact James Fischer, Mail Code 635,

Goddard Space Flight Center, Greenbelt,
Maryland, 20771, or by phone at (301)
286-3464.
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